408 research outputs found

    Heart Rate Extraction from Novel Neck Photoplethysmography Signals.

    Get PDF
    This paper demonstrates for the first time how heart rate (HR) can be extracted from novel neck photoplethysmography (PPG). A novel algorithm is presented, which when tested in neck PPG signals recorded from 9 subjects at different respiratory rates, obtained good precision with respect to gold standard ECG signals. Mean absolute error (MAE), standard deviation error (SDAE) and root-mean-square error (RMSE) resulted in 1.22, 1.54 and 1.98 beats per minute (BPM), respectively. HRneck estimation showed strong correlation (R=0.94) with reference HRECG. Good agreement between both techniques was also demonstrated by Bland-Altman analysis. The bias between mean HR paired differences was -0.16 BPM and 95% limits of agreement (LoA) were (-4.7, 4.4). Comparatively, for widely used finger PPG, errors were slightly smaller (MAE=0.38 BPM, SDAE=0.48 BPM, RMSE=0.62BPM) and the correlation with reference ECG was also very close to 1 (R=0.99). Bias of -0.04 BPM and 95% LoA (-1.5, 1.4), also showed high degree of agreement. However, these findings show the potential the neck could have as an alternative body location for wearable monitors, aiming to reduce the number of sensing sites whilst still providing access to a wide variety of physiological parameters

    Extracting the jugular venous pulse from anterior neck contact photoplethysmography

    Get PDF
    The jugular venous pulse (JVP) is the reference physiological signal used to detect right atrial and central venous pressure (CVP) abnormalities in cardio-vascular diseases (CVDs) diagnosis. Invasive central venous line catheterization has always been the gold standard method to extract it reliably. However, due to all the risks it entails, novel non-invasive approaches, exploiting distance cameras and lasers, have recently arisen to measure the JVP at the external and internal jugular veins. These remote options however, constraint patients to very specific body positions in front of the imaging system, making it inadequate for long term monitoring. In this study, we demonstrate, for the first time, that reflectance photoplethysmography (PPG) can be an alternative for extracting the JVP from the anterior jugular veins, in a contact manner. Neck JVP-PPG signals were recorded from 20 healthy participants, together with reference ECG and arterial finger PPG signals for validation. B-mode ultrasound imaging of the internal jugular vein also proved the validity of the proposed method. The results show that is possible to identify the characteristic a, c, v pressure waves in the novel signals, and confirm their cardiac-cycle timings in consistency with established cardiac physiology. Wavelet coherence values (close to 1 and phase shifts of ±180°) corroborated that neck contact JVP-PPG pulses were negatively correlated with arterial finger PPG. Average JVP waveforms for each subject showed typical JVP pulses contours except for the singularity of an unknown "u" wave occurring after the c wave, in half of the cohort. This work is of great significance for the future of CVDs diagnosis, as it has the potential to reduce the risks associated with conventional catheterization and enable continuous non-invasive point-of-care monitoring of CVP, without restricting patients to limited postures

    Proof of concept of a novel neck-situated wearable PPG system for continuous physiological monitoring

    Get PDF
    Continuous overnight vital signs monitoring would be ideal for patients suffering from epilepsy, where life-threatening hypoxemias can occur during sleep. However, the existing physiological monitoring systems suffer from limitations in terms of usability factors and/or limited information of the signals being acquired. The body location of the monitoring system is a crucial consideration, seldom addressed by the wider community. This article presents a proof-of-concept, neck-worn photoplethysmography system, which was developed and tested to assess the feasibility of the neck as a monitoring site for longitudinal sensing of cardiac and respiratory responses during sleep. The novel system was compared against a gold-standard commercial multichannel cardiorespiratory polysomnography (PSG) system during oxygen desaturation cycles, to assess its ability to measure heart rate, respiratory rate (RR), and peripheral blood oxygen saturation (SpO 2 ) on 15 participants. The findings for heart rate showed a marginal mean error of 0.47 beats/min with limits of agreement (LOA) at 95% confidence between −3.17 and 4 bpm. RR comparisons had an overall mean error of 0.43 breaths/min, with LOA at 95% confidence between −2.73 and 3.3 bpm. Lastly, the system accurately outputs SpO 2 with an overall root-mean-square error of 1.44% between 90 and 100% SpO 2 using a custom calibration method. Moreover, it was observed that the neck made it possible for the system to detect desaturation events on an average 12.6 s prior to the PSG system, which used a peripheral finger-based PPG system. Ultimately, this proof-of-concept study illustrates the viability of neck-based sensing for minimally invasive monitoring of cardiac and respiratory vitals during sleep

    A high-temperature superconducting weak-link defined by ferroelectric field-effect

    Full text link
    In all-oxide ferroelectric (FE) - superconductor (S) bilayers, due to the low carrier concentration of oxides compared to transition metals, the FE interfacial polarization charges induce an accumulation (or depletion) of charge carriers in the S. This leads either to an enhancement or a depression of its critical temperature depending on FE polarization direction.Here we exploit this effect at a local scale to define planar weak-links in high-temperature superconducting wires. This is realized in BiFeO3(FE)/YBa2Cu3O7(S)bilayers in which the remnant FE domain structure is written at will by locally applying voltage pulses with a conductive-tip atomic force microscope. In this fashion, the FE domain pattern defines a spatial modulation of superconductivity. This allows us to write a device whose electrical transport shows different temperature regimes and magnetic field matching effects that are characteristic of Josephson coupled weak-links. This illustrates the potential of the ferroelectric approach for the realization of high-temperature superconducting devices

    Diagnostic Accuracy of Adenosine Deaminase and Lymphocyte Proportion in Pleural Fluid for Tuberculous Pleurisy in Different Prevalence Scenarios

    Get PDF
    BACKGROUND: Tuberculous pleural effusion (TPE) is a paucibacillary manifestation of tuberculosis, so isolation of Mycobacterium tuberculosis is difficult, biomarkers being an alternative for diagnosis. Adenosine deaminase (ADA) is the most cost-effective pleural fluid marker and is routinely used in high prevalence settings, whereas its value is questioned in areas with low prevalence. The lymphocyte proportion (LP) is known to increase the specificity of ADA for this diagnosis. We analyse the diagnostic usefulness of ADA alone and the combination of ADA ≥ 40 U/l (ADA(40)) and LP ≥ 50% (LP(50)) in three different prevalence scenarios over 11 years in our area. MATERIALS AND METHODS: Biochemistry, cytology and microbiology studies from 472 consecutive pleural fluid samples were retrospectively analyzed. ADA and differential cell count were determined in all samples. We established three different prevalence periods, based on percentage of pleural effusion cases diagnosed as tuberculosis: 1998-2000 (31.3%), 2001-2004 (11.8%), and 2005-2008 (7.4%). ROC curves, dispersion diagrams and pre/post-test probability graphs were produced. TPE accounted for 73 episodes (mean prevalence: 15.5%). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for ADA(40) were 89%, 92.7%, 69.2% and 97.9%, respectively. For ADA(40)+LP(50) the specificity and PPV increased (98.3% and 90%) with hardly any decrease in the sensitivity or NPV (86.3% and 97.5%). No relevant differences were observed between the three study periods. CONCLUSIONS/SIGNIFICANCE: ADA remains useful for the diagnosis of TPE even in low-to-intermediate prevalence scenarios when combined with the lymphocyte proportion

    Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Get PDF
    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] gsim −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution
    • …
    corecore