744 research outputs found

    XUV-driven mass loss from extrasolar giant planets orbiting active stars

    Get PDF
    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars – ∊ Eridani, AD Leonis and AU Microscopii – are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star’s X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet’s neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun)

    Effect of stellar flares on the upper atmospheres of HD 189733b and HD 209458b

    Full text link
    Stellar flares are a frequent occurrence on young low-mass stars around which many detected exoplanets orbit. Flares are energetic, impulsive events, and their impact on exoplanetary atmospheres needs to be taken into account when interpreting transit observations. We have developed a model to describe the upper atmosphere of Extrasolar Giant Planets (EGPs) orbiting flaring stars. The model simulates thermal escape from the upper atmospheres of close-in EGPs. Ionisation by solar radiation and electron impact is included and photochemical and diffusive transport processes are simulated. This model is used to study the effect of stellar flares from the solar-like G star HD209458 and the young K star HD189733 on their respective planets. A hypothetical HD209458b-like planet orbiting the active M star AU Mic is also simulated. We find that the neutral upper atmosphere of EGPs is not significantly affected by typical flares. Therefore, stellar flares alone would not cause large enough changes in planetary mass loss to explain the variations in HD189733b transit depth seen in previous studies, although we show that it may be possible that an extreme stellar proton event could result in the required mass loss. Our simulations do however reveal an enhancement in electron number density in the ionosphere of these planets, the peak of which is located in the layer where stellar X-rays are absorbed. Electron densities are found to reach 2.2 to 3.5 times pre-flare levels and enhanced electron densities last from about 3 to 10 hours after the onset of the flare. The strength of the flare and the width of its spectral energy distribution affect the range of altitudes that see enhancements in ionisation. A large broadband continuum component in the XUV portion of the flaring spectrum in very young flare stars, such as AU Mic, results in a broad range of altitudes affected in planets orbiting this star.Comment: accepted for publication in A&

    Observation of O+ 4P-4D0 lines in proton aurora over Svalbard

    Get PDF
    Spectra of a proton aurora event show lines of O+ 4P-4D0 multiplet (4639–4696 Å) enhanced relative to the N2 +1N(0,2) compared to normal electron aurora. Conjugate satellite particle measurements are used as input to electron and proton transport models, to show that p/H precipitation is the dominant source of both the O+ and N2 +1N emissions. The emission cross-section of the multiplet in p collisions with O and O2 estimated from published work does not explain the observed O+ brightness, suggesting a higher emission cross-section for low energy p impact on O

    Optimising a nonlinear utility function in multi-objective integer programming

    Get PDF
    In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective integer programming problem.Comment: 11 pages, 2 tables; v3: minor revisions, to appear in Journal of Global Optimizatio

    Cometary Ionospheres: An Updated Tutorial

    Get PDF
    This chapter aims at providing the tools and knowledge to understand and model the plasma environment surrounding comets in the innermost part near the nucleus. In particular, our goal is to give an updated post-Rosetta view of this ionised environment: what we knew, what we confirmed, what we overturned, and what we still do not understand

    Characterizing the limitations to the coupling between Saturn's ionosphere and middle magnetosphere

    Get PDF
    Observations of Saturn's ultraviolet and infrared aurora show structures that, when traced along the planetary magnetic field, map to the inner, middle, and outer magnetosphere. From low to high latitudes the structures seen in the UV are the Enceladus footprint, which maps to an equatorial radius of 4 R S (Saturn radii); a diffuse emission that maps to a broad equatorial region from 4-11 RS on the nightside; and a bright ring of emission that maps to ∼15 RS. With the exception of the Enceladus spot, the magnetospheric drivers for these auroral emissions are not yet fully understood. We apply a 1D spatial, 2D velocity space Vlasov solver to flux tubes mapping from equatorial radii of 4, 6, 9, and 13 RS to Saturn's southern atmosphere. The aim is to globally characterize the field-aligned potential structure and plasma density profiles. The ionospheric properties - the field-aligned current densities at the ionospheric boundary, energy intensity profiles and fluxes of the electrons precipitating into the ionosphere - are also determined. We then couple our results to an ionospheric model to calculate the Pedersen conductances at the foot of the relevant flux tubes. We find that for a zero net potential drop between the ionosphere and magnetosphere, there exists a sharp potential drop at ∼1.5 RS along the magnetic field line as measured from the planetary center. The strength of this potential drop is approximately equal to that of the ambipolar potential resulting from the centrifugal confinement of the heavy, cold magnetospheric ion population. We also find that the ionospheric properties respond to changes in the magnetospheric plasma population, which are reflected in the nature of the precipitating electron population. For the flux tube mapping to 9 RS (-70), the incident electron energy flux into the ionosphere resulting from a magnetospheric plasma population with a small fraction of hot electrons is an order of magnitude less than that inferred from observations, implying that significant high-latitude field-aligned potentials (up to 1.5 keV) may exist in the saturnian magnetosphere. Calculated ionospheric Pedersen conductances range from 3.0-18.9 mho, and are thus not expected to limit the currents flowing between the ionosphere and magnetosphere

    Structural Features of Single-Stranded Integron Cassette attC Sites and Their Role in Strand Selection

    Get PDF
    We recently showed that cassette integration and deletion in integron platforms were occurring through unconventional site-specific recombination reactions involving only the bottom strand of attC sites. The lack of sequence conservation among attC sites led us to hypothesize that sequence-independent structural recognition determinants must exist within attC sites. The structural data obtained from a synaptic complex of the Vibrio cholerae integrase with the bottom strand of an attC site has shown the importance of extra helical bases (EHB) inside the stem-loop structure formed from the bottom strand. Here, we systematically determined the contribution of three structural elements common to all known single-stranded attC site recombination substrates (the EHBs, the unpaired central spacer (UCS), and the variable terminal structure (VTS)) to strand choice and recombination. Their roles have been evaluated in vivo in the attl x attC reaction context using the suicide conjugation assay we previously developed, but also in an attC x attC reaction using a deletion assay. Conjugation was used to deliver the attC sites in single-stranded form. Our results show that strand choice is primarily directed by the first EHB, but the presence of the two other EHBs also serves to increase this strand selection. We found that the structure of the central spacer is essential to achieve high level recombination of the bottom strand, suggesting a dual role for this structure in active site exclusion and for hindering the reverse reaction after the first strand exchange. Moreover, we have shown that the VTS has apparently no role in strand selectivity

    Response of Saturn's auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity

    No full text
    In the high-latitude regions of Saturn, the ionosphere is strongly coupled to the magnetosphere through the exchange of energy. The influx of energetic particles from Saturn's magnetosphere enhances the ionospheric densities and temperatures, affects the electrodynamical properties of the ionosphere, and contributes to the heating of the thermosphere. It is therefore critical to accurately model the energy deposition of these magnetospheric particles in the upper atmosphere in order to evaluate key ionospheric quantities of the coupled magnetosphere-ionosphere system. We present comprehensive results of ionospheric calculations in the auroral regions of Saturn using our Saturn Thermosphere-Ionosphere Model (STIM). We focus on solar minimum conditions during equinox. The atmospheric conditions are derived from the STIM 3-D General Circulation Model. The ionospheric component is self-consistently coupled to the solar and auroral energy deposition component. The precipitating electrons are assumed to have a Maxwellian distribution in energy with a mean energy E-m and an energy flux Q(0). In the presence of hard electron precipitation (1 < E-m <= 20 keV) with Q(0) > 0.04 mW m(-2), the ionospheric conductances are found to be proportional to the square root of the energy flux, but the response of the ionosphere is not instantaneous and a time delay needs to be applied to Q(0) when estimating the conductances. In the presence of soft electron precipitation (E-m < 500 eV) with Q(0) <= 0.2 mW m(-2), the ionospheric conductances at noon are found to be primarily driven by the Sun. However, soft auroral electrons are efficient at increasing the ionospheric total electron content and at heating the thermal electron population

    The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data

    Get PDF
    We propose a revised Chapman model for the ionosphere of Mars by allowing for vertical variation of electron temperature. An approximate energy balance between solar EUV heating and CO2 collisional cooling is applied in the dayside Martian ionosphere, analogous to the method recently proposed by Withers et al. (2014). The essence of the model is to separate the contributions of the neutral and electron thermal structures to the apparent width of the main ionospheric layer. Application of the model to the electron density profiles from the Mars Global Surveyor (MGS) radio occultation measurements reveals a clear trend of elevated electron temperature with increasing solar zenith angle (SZA). It also reveals that the characteristic length scale for the change of electron temperature with altitude decreases with increasing SZA. These observations may imply enhanced topside heat influx near the terminator, presumably an outcome of the solar wind interactions with the Martian upper atmosphere. Our analysis also reveals a tentative asymmetry in electron temperature between the northern and southern hemispheres, consistent with the scenario of elevated electron temperature within minimagnetospheres
    • …
    corecore