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Abstract We propose a revised Chapman model for the ionosphere of Mars by allowing for vertical
variation of electron temperature. An approximate energy balance between solar EUV heating and CO2

collisional cooling is applied in the dayside Martian ionosphere, analogous to the method recently
proposed by Withers et al. (2014). The essence of the model is to separate the contributions of the neutral
and electron thermal structures to the apparent width of the main ionospheric layer. Application of
the model to the electron density profiles from the Mars Global Surveyor (MGS) radio occultation
measurements reveals a clear trend of elevated electron temperature with increasing solar zenith angle
(SZA). It also reveals that the characteristic length scale for the change of electron temperature with
altitude decreases with increasing SZA. These observations may imply enhanced topside heat influx near
the terminator, presumably an outcome of the solar wind interactions with the Martian upper atmosphere.
Our analysis also reveals a tentative asymmetry in electron temperature between the northern and southern
hemispheres, consistent with the scenario of elevated electron temperature within minimagnetospheres.

1. Motivation

A large number of electron density profiles in the Martian ionosphere have been obtained by radio
occultation and/or radar sounding measurements made aboard several spacecraft [Withers, 2009, and
references therein]. On the dayside, the Martian ionosphere contains a well-defined primary layer (M2) and
a low-altitude secondary layer (M1) that have frequently drawn analogy to the terrestrial F1 and E layers
[Rishbeth and Mendillo, 2004]. The M2 layer is mainly produced by solar EUV ionization and the M1 layer by
solar X-ray ionization along with impact ionization by photoelectrons and secondary electrons [e.g., Martinis
et al., 2003; Fox and Yeager, 2006; Peter et al., 2014]. Extensive efforts have been devoted to understanding
the density structures of both layers, showing that they are generally consistent with predictions of the
idealized Chapman theory [e.g., Morgan et al., 2008; Fox and Yeager, 2009; Fox and Weber, 2012].

Less well studied, however, is the electron thermal structure with the only available measurements made
by the retarding potential analyzers (RPAs) aboard Viking Landers 1 and 2 (VL1 and VL2) at altitudes above
the M2 peak at low solar activity and at a solar zenith angle (SZA) of 44◦ [Hanson and Mantas, 1988]. Several
numerical models have been developed so far to calculate the electron temperature profile in the Martian
ionosphere, demonstrating that solar heating alone is insufficient to reproduce the Viking RPA data [e.g.,
Chen et al., 1978; Choi et al., 1998; Matta et al., 2014]. Recently, Withers et al. [2014] proposed an innovative
method to estimate electron temperature, which is analytic in nature and easily implemented. In this study,
a revised Chapman model for the ionosphere of Mars is constructed based on their method. The model is
applied to the Mars Global Surveyor (MGS) radio occultation data to investigate variations of the electron
thermal structure near the M2 peak.

2. The Revised Chapman Model

Chapman [1931a, 1931b] introduced a simplified description of the ionosphere produced by
monochromatic photoionization of an atmosphere under hydrostatic equilibrium, which is expressed as
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where the left-hand side (LHS) represents the electron production rate and the right-hand side (RHS) the
electron loss rate. In equation (1), Pem is the peak electron production rate, z is the altitude, zm is the altitude
of peak electron production, Hn is the neutral density scale height assumed to be a constant, Ne is the
electron number density, and 𝛼 is the dissociative recombination coefficient of O+

2 , the most abundant
molecular ion in the Martian ionosphere [Hanson et al., 1977]. According to Peverall et al. [2001],
𝛼≈𝛼0(Te0∕Te)0.7 with Te being the electron temperature and 𝛼0 ≈ 2.4 × 10−7 cm3 s−1 for a reference electron
temperature of Te0 ≈ 300 K. Accordingly, the electron density profile could be written as

Ne(z) = Nem

[
Te(z)
Tem

]0.35

exp
{
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2
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− exp
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where Nem and Tem are the electron density and electron temperature at zm. Equation (2) is different from
the idealized Chapman function [Chapman, 1931a, 1931b] with the incorporation of the additional scaling
factor, (Te∕Tem)0.35, which allows for an explicit vertical variation of electron temperature.

Following Withers et al. [2014], we then assume an ideal balance between solar EUV heating and CO2

collisional cooling, formulated as

𝜖𝛼0

[
Te0

Te(z)

]0.7

Ne(z)2 = KeNn(z)Ne(z)
Te(z) − Tn

[Te(z)]0.5
, (3)

where the LHS gives the heating rate and the RHS the cooling rate of thermal electrons (see equation (2)
of Withers et al. [2014] with the electron production rate, Pe, replaced by their equation (1)). In equation (3),
𝜖 is the average thermal energy release per ionization event due to Coulomb collisions between photo-
electrons (and their secondaries) and thermal electrons, and Ke ≈9.15×10−14 eV cm3 s−1 K−1∕2 is a constant
characterizing the cooling rate that includes both vibrational and rotational excitations [see Matta et al.,
2014, equations (A12) and (A13)]. We derive 𝜖 based on a solar energy deposition model that has been
successfully used to describe the suprathermal electron population in the sunlit ionospheres of Venus
[Cui et al., 2011] and Titan [Galand et al., 2006]. The model, adapted to Mars and coupled with a fluid
ionospheric model [Matta et al., 2014], indicates that 𝜖 ≈ 0.7 eV near the M2 peak at 12:00 local time on Mars
and for low solar activity conditions. Under other conditions, the value of 𝜖 is likely different, but we argue
in section 3.2 that the main conclusions of this paper are not influenced by the exact choice of 𝜖. Also note
that Withers et al. [2014] adopted a slightly lower 𝜖 value of ≈ 0.5 eV in their calculations.

In equation (3), the neutral temperature, Tn, is calculated from Tn =MagHn∕kB, where Ma is the mean
molecular mass, g is the acceleration of gravity, and kB is the Boltzmann constant. We assume in this study
constant values of Ma (≈44 amu) and g (≈345 cm s−2). The former assumption could be tested by the
neutral atmosphere composition model of Nier and McElroy [1977], from which we find that Ma is
overestimated by less than 5% below 140 km. The background neutral density, Nn, in equation (3) can be
obtained from

Nn(z) =
1

𝜎aChHn
exp

(
−

z − zm

Hn

)
, (4)

where 𝜎a ≈3 × 10−17 cm2 is the average photoabsorption cross section of CO2 at 20–90 nm and Ch is the
Chapman grazing incidence function that depends on SZA. Here we have implicitly used the fact that the
neutral density scale height is constant and that the altitude of peak electron production corresponds to
where the optical depth for CO2 photoabsorption is unity [Fox et al., 2008].

Equation (2) is used to describe an observed electron density profile, with Nem, zm, and Hn treated as
independent parameters to be constrained by data-model comparison. The electron temperature profile, Te,
does not introduce any additional parameters because it can be numerically solved with equations (2) and
(3) for a given combination of (Nem, zm, and Hn).

The application of the revised Chapman model outlined above is subject to two major limitations. The
first limitation is the choice of a constant thermal energy release per ionization event of 0.7 eV, which is
overestimated well below the M2 peak where the photoelectrons are overall more energetic leading to
a larger proportion of energy spent in ionization [e.g., Galand et al., 2009]. In practice, this sets the lower
limit of model application to 10 km below the M2 peak. The choice of a constant 𝜖 also prevents us from
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investigating possible solar cycle variation of the electron temperature. The second limitation is the neglect
of thermal conduction in local energy balance, which is clearly invalid at high altitudes [Matta et al., 2014].
Following Withers et al. [2014], we place a fixed upper limit of model application at 140 km.

3. Trends of the Electron Thermal Structure
3.1. Overview
In this study, the revised Chapman model is applied to the MGS radio occultation data acquired over
seven occultation seasons from December 1998 to June 2005 [Tyler et al., 2001]. These data are directly
available at the Geosciences Node of the NASA Planetary Data System (PDS) public archives
(ftp://pds-geosciences.wustl.edu/mgs/mgs-m-rss-5-sdp-v1), in the form of vertical electron density
profiles covering a SZA range of 70◦–90◦, a solar longitude range of 70◦–227◦, as well as two narrow
latitude bands of 61◦N–85◦N and 65◦S–69◦S. Only the daily averaged electron density profiles are used
in this study. Typically, 6–12 individual profiles were obtained within each day. These profiles are widely
separated in longitude but with nearly identical latitude and SZA values. Accordingly, using the daily
averaged profiles smears out any longitudinal variation [e.g., Bougher et al., 2001], but the variations with
SZA (section 3.2) and latitude (section 3.3) should be well retained.

As described in section 2, the portion of an electron density profile from 10 km below the M2 peak to a
fixed altitude of 140 km is included in the data-model comparison. We require arbitrarily that the width of
the selected altitude range is at least 13 km, which is the typical scale over which the electron temperature
increases by a factor of e (see below). This leads to the selection of 309 out of a total number of 670 daily
averaged profiles used for investigating the electron thermal structure. These profiles cover the SZA range
up to 85◦. Profiles further approaching the terminator are not included, either because their peaks are at
sufficiently high altitudes that the effects of thermal conduction can no longer be ignored or because the
width of the selected altitude range is too narrow to constrain rigorously the model parameters.

The profiles of the neutral temperature, Tn, and the electron temperature, Te, derived from the selected MGS
data set reflect properly the situation of strong thermal coupling at the bottomside due to high neutral
atmospheric densities and weak thermal coupling at the topside with large temperature differences [e.g.,
Chen et al., 1978]. Based on our analysis, the altitude-independent neutral temperature, Tn, lies in the range
of 120–210 K with a mean of 150 K, in broad agreement with the range inferred from previous measure-
ments [e.g., Nier and McElroy, 1977; Seiff and Kirk, 1977; Keating et al., 1998; Withers, 2006; Forget et al., 2009;
McDunn et al., 2010; Withers et al., 2011; Chaufray et al., 2011]. The electron temperature at the peak of elec-
tron production, Tem, varies between 320 K and 570 K with a mean of 410 K, and the electron temperature
scale height, Le, varies between 9 km to 18 km with a mean of 13 km. Note that we do not assume a pri-
ori an exponential form for the vertical variation of electron temperature, Te, but instead estimate Le from a
logarithmic linear fitting to each of the Te profiles actually derived.

The above description is illustrated by the example in Figure 1, where we show with the solid circles the daily
averaged electron density profile acquired by the MGS radio occultation experiments made on 19 January
2001. The thick dashed and solid lines give the idealized Chapman profile and the revised Chapman profile,
respectively. It is evident that both models reproduce well the data over the altitude range included in the
model fitting. However, the two models are to be distinguished in terms of how the underlying thermal
structure is treated. In the figure inset, we present the temperature profiles for both neutrals and electrons,
Tn and Te, over the altitude range of interest. Tn is assumed to be a constant in both cases, with the value for
idealized Chapman (dark dashed) being slightly higher than that for revised Chapman (dark solid). The solid
circles give the electron temperature profile actually derived at the resolution of the raw electron density
profile, whereas the light solid line gives the exponential fit with an electron temperature scale height of
Le ≈ 11.4 km. We also note that both models fail to reproduce the observed electron densities at lower and
higher altitudes. The disagreement at lower altitudes is clearly due to the neglect of the M1 layer, whereas
the disagreement at higher altitudes is due to the combination of several reasons, such as the breakdown of
photochemical equilibrium and the importance of thermal conduction.

The electron temperature profiles cannot be directly compared to the VL1 RPA measurements which were
made above 200 km [Hanson and Mantas, 1988]. Previous modeling efforts have included a heat influx at
the top of the Martian ionosphere in order to reproduce the Viking RPA values [Chen et al., 1978; Choi et al.,
1998; Matta et al., 2014]. The corresponding electron temperature near the M2 peak was found to be
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Figure 1. The electron density, Ne , as a function of altitude, z, acquired
by the MGS radio occultation experiments made on 19 January 2001.
The thick dashed and solid lines give the idealized Chapman profile and
the revised Chapman profile, respectively. The figure inset shows the
temperature profiles for both neutrals and electrons, Tn and Te, over the
altitude range of interest. Tn is assumed to be a constant in both cases,
with the value for idealized Chapman (dark dashed) being slightly higher
than that for revised Chapman (dark solid). The solid circles give the elec-
tron temperature profile actually derived at the resolution of the raw
electron density profile, whereas the light solid line gives the exponential
fit with an electron temperature scale height of Le ≈11.4 km.

≈200–300 K, which is somewhat
lower than the Tem range found here.
In addition, the nominal model of
Matta et al. [2014] revealed a sharply
increasing Te from 137 K at 110 km
to 1130 K at 160 km, implying an
electron temperature scale height
of ≈24 km. This is larger than the
Le values derived in the present
study. We caution that previous
calculations were made at SZA ≈44◦,
whereas our results are appropriate
for the near-terminator conditions.
Therefore, the above distinctions
in Tem and Le may have important
implications on the SZA variation
of the electron thermal structure in
the Martian ionosphere, which we
examine below.

3.2. SZA Variation
The revised Chapman model fitting
provides for each daily averaged
electron density profile a set of best
fit parameters including the altitude
of peak electron production, zm, the
electron density at zm, Nem, and the
neutral density scale height, Hn.

The SZA variations of these parameters are shown by the dark circles in Figure 2, where the corresponding
variations for idealized Chapman, z′m, N′

em, and H′
n, are given by the light circles for comparison. The

differences between the two sets of parameters are an important issue of this study and are discussed in
details in section 4. Here we caution that at the face value, Figure 2 (middle) reveals a slight decrease in
peak altitude with increasing SZA, in contrary to the expected behavior shown by numerous existing works
[e.g., Fox and Weber, 2012, and references therein]. However, we remind that the revised Chapman model
fitting is selectively applied to a portion of the observed electron density profiles for which the influence of
thermal conduction is thought to be of minor importance (see section 2). This leads to the biased sampling
that favors profiles peaking at relatively low altitudes. Indeed, the idealized Chapman model fitting to the

Figure 2. (left to right) The SZA variations of the altitude of peak electron production, zm, the electron density at zm,Nem ,
and the neutral scale height, Hn , all obtained from the revised Chapman model fitting to the MGS radio occultation data.
Also shown in the figure are the SZA variations of similar parameters obtained by assuming idealized Chapman, denoted
as z′m , N′

em , and H′
n . The dark circles are for revised Chapman, and the light circles for idealized Chapman, respectively.

A detailed comparison between the two sets of parameters is presented in section 4. We caution that the apparent
decrease in peak altitude with increasing SZA, as shown in Figure 2 (middle), reflects biased sample selection rather than
physical reality (see text for details).
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Figure 3. (left to right) The SZA variations of the electron temperature at the altitude of peak electron production, Tem ,
as well as the electron temperature scale height, Le , obtained from the revised Chapman model fitting to the MGS radio
occultation data. Also shown is the relation between Tem and the neutral temperature, Tn, of which the latter is assumed
to be a constant for each individual electron density profile. The thick solid line in each panel gives the best fit relation,
either second-order polynomial or linear (see text for details).

entire data set does confirm the expected behavior of a general increase in peak altitude with increasing
SZA (not shown in Figure 2).

An additional parameter derived from the revised Chapman model fitting is the electron temperature at
zm, Tem, which cannot be obtained from idealized Chapman. The SZA variation of this parameter is shown
in Figure 3 (left), revealing that on average Tem increases from ≈370 K at SZA =70◦ to ≈550 K at SZA=85◦.
The linear Pearson correlation coefficient between SZA and Tem is ≈0.68, and the correlation could be
reasonably described by

Tem ≈ 4190 − 110 × SZA + 0.788 × SZA2
, (5)

where Tem is given in kelvin and SZA in degree. The electron temperature scale height, Le, also shows a SZA
trend as illustrated in Figure 3 (middle), though much weaker with a linear Pearson correlation coefficient of
≈ −0.13 and a best fit linear relation of

Le ≈ 16.2 − 0.047 × SZA, (6)

where Le is given in kilometer and SZA in degree. Specifically, Le decreases slightly from ≈13 km at
SZA=70◦ to ≈12 km at SZA=85◦. We also show the relation between Tn and Tem in Figure 3 (right), with
the clear correlation consistent with the expected strong thermal coupling between the neutral upper
atmosphere and ionosphere [e.g., Matta et al., 2014]. The corresponding Pearson correlation coefficient is
≈ 0.77, and the linear fit is given by

Tem ≈ 2.64 × Tn, (7)

where both Tn and Tem are given in kelvin.

The typical uncertainty in electron density near the M2 peak is 10% [e.g., Breus et al., 2004]. This leads
to an uncertainty in Tem of ≈ 8% according to equation (3), which is not large enough to influence the
observed increase of ≈ 50% from SZA = 70◦ to 85◦. Standard 𝜒

2 analysis confirms our expectation that the
uncertainties in electron temperature related to uncertainties in electron density are of minor importance
[Press et al., 1992]. Within the context of this study, main sources of uncertainty likely come from the choices
of some model parameters as well as the model assumption of negligible thermal conduction detailed
as follows.

First, we note that the derived electron temperatures depend on the choices of the average thermal
energy release per ionization event, 𝜖, and the constant characterizing the cooling rate, Ke. According to
equation (3), it is really the ratio, 𝜖∕Ke, that matters. The effect of a varying 𝜖∕Ke is to shift the SZA-Tem

and SZA-Le relations in Figure 3 either upward or downward, whereas the overall trends remain nearly
unaffected. For example, keeping Ke unchanged but decreasing 𝜖 to 0.5 eV (the same value as adopted
in Withers et al. [2014]) reduces Tem to ≈320 K at SZA=70◦ and ≈440 K at SZA=85◦ with a linear Pearson
correlation coefficient of ≈0.64.
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Second, another potentially important uncertainty comes from the effect of thermal conduction, though
we have limited model application to altitudes below 140 km. Qualitatively, such an effect reduces both the
local electron temperature and electron temperature gradient, especially at large SZA where it becomes
more effective due to the elevation of the M2 peak. To exclude this possibility, we examine further the SZA
variation of the electron temperature at a fixed altitude of 125 km. This is a sufficiently low altitude where
the contribution of thermal conduction to the local energy budget is no more than ≈ 5% [see Matta et al.,
2014, Figure 6]. Our analysis shows that Te now increases from ≈ 270 K at SZA = 70◦ to ≈ 450 K at SZA = 85◦,
similar to the trend in Figure 3. We also mention above that to avoid the influence of thermal conduction,
the sample used in this study preferentially selects profiles that peak at relatively low altitudes (see Figure 2,
middle). This means that the actual SZA variation of Tem, when corrected for such a sampling bias, might be
even stronger as electron temperature increases with increasing altitude (see Figure 1 inset).

Based on the modeling results of Matta et al. [2014], the electron temperature at a fixed SZA increases
sharply with increasing altitude, whereas the electron temperature at a fixed altitude decreases with
increasing SZA. The combined effect is a gentle increase in Tem over the SZA range shown in Figure 3.
Specifically, the calculations of Matta et al. [2014] reveal that at a fixed altitude of 125 km, electron
temperature decreases from ≈246 K at SZA=70◦ to ≈188 K at SZA=85◦, whereas at the peak of electron
production, Tem increases modestly from ≈335 K to ≈390 K over the same SZA range. Therefore, it is clear
that the modeling result of Matta et al. [2014] is in disagreement with our findings. We emphasize that
their results come from a coupled fluid and kinetic model of the Martian ionosphere purely driven by solar
radiation, whereas ours are directly constrained by the observations with the aid of the condition for local
energy balance. Clearly, the solar-driven scenario is incapable of reproducing the data.

Despite a similar approach used here and used by Withers et al. [2014], the SZA variation of the electron
temperature obtained by the latter is similar to that of Matta et al. [2014], thus different from ours.
However, we caution that the result of Withers et al. [2014] ought to be regarded as a prediction under
representative physical conditions (e.g., a constant neutral temperature of 181 K and a constant solar
ionizing flux of 1010 cm−2 s−1 were assumed), whereas our result is directly constrained by the data. One
key argument made by Withers et al. [2014] is that the scaling of electron density at the peak with Ch to
the power of −0.5 is ensured by the insignificant SZA variation of electron temperature at the peak. For
comparison, the strong SZA variation in Tem in our case leads to the observed variation in Nem (see Figure 2)
that scales with Ch to the power of −0.55. Such a difference in the SZA variation of Nem is acceptable since
existing works reveal a range of possible power index from ≈ −0.41 [e.g., Fox and Yeager, 2006] to ≈ −0.57
[e.g., Hantsch and Bauer 1990].

It is known from existing calculations that an ad hoc heat influx from the top of the Martian atmosphere has
to be invoked to match the Viking RPA measurements [e.g., Chen et al., 1978; Choi et al., 1998; Matta et al.,
2014]. Accordingly, the SZA trend of electron temperature revealed in Figure 3 (left) may imply an enhanced
heat influx at large SZA. The calculations of Choi et al. [1998] further indicate that the electron temperature
scale height tends to decrease with increasing levels of topside heat influx (see their Figure 2), which is
consistent with the trend implied by Figure 3 (middle). If the above arguments are true, we speculate that
the solar wind (SW) interactions with the Martian upper atmosphere play a crucial role since the ambient
magnetic field lines at the latitudes of interest tend to be more open and vertical with increasing SZA,
which facilitates access of precipitating SW electrons [e.g., Brain et al., 2010, and references therein]. Such a
conjecture remains to be verified by rigorous calculations that treat precipitating SW electrons as the
primary source of topside heat influx and also incorporate large-scale variations in the ambient magnetic
field configuration. Similar calculations have been made at the nightside of the Martian ionosphere but only
focused on electron impact ionization rate [e.g., Fillingim et al., 2007; Lillis et al., 2009, 2011].

3.3. Hemispheric Asymmetry
The electron thermal structure in the Martian ionosphere is likely to be modified by the presence of strong
crustal magnetic anomalies, which may produce isolated minimagnetospheres, trap photoelectrons, and
enhance solar EUV heating via Coulomb collisions between photoelectrons (and their secondaries) and
thermal electrons. Such a process is manifested as increased electron densities that coincide with the
locations of strong crustal magnetic fields [e.g., Krymskii et al., 2003; Duru et al., 2006]. It is well known that
on Mars, the crustal magnetic fields tend to be stronger at the southern hemisphere than the northern
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hemisphere [e.g., Acuña et al., 1998, 1999]. This motivates us to examine possible hemispheric asymmetry in
the derived electron thermal structure.

Of the 307 daily averaged electron density profiles studied here, only 13 lie at the southern hemisphere,
with a median electron temperature of ≈490 K at the altitude of peak electron production, zm,≈810 K
at the altitude of peak electron density, z′m, or ≈440 K at a reference altitude of 125 km. At the northern
hemisphere, the respective median temperatures are ≈400 K at zm,≈600 K at z′m, or ≈290 K at 125 km,
about 20%–35% lower than the southern hemisphere values. We note that the two hemispheres are
not identically sampled in SZA, with four profiles (30%) from the southern hemisphere obtained at
SZA=78◦–80◦ and 9 (70%) at SZA=80◦–85◦. To remove the biased sampling, we also calculate the
electron temperatures at the northern hemisphere weighted by the above sampling rate, which are
≈460 K at zm,≈730 K at z′m, and ≈340 K at 125 km, now lower than the mean southern hemisphere
values by about 10%–25%.

For comparison, Breus et al. [2004] estimated the mean electron temperature at the southern hemisphere
to be higher than the mean northern hemisphere value by 50%–60%, referring to the altitude of peak
electron density, z′m, and uncorrected for the hemispheric difference in SZA sampling. However, we note that
a constant energy release per ionization event of 0.7 eV is used throughout this study (see section 2), which
means that any influence of the solar cycle variation on electron thermal structure has been ignored. In
contrast, such an influence was taken into account by Breus et al. [2004], who noticed that the solar ionizing
flux for measurements made at the southern hemisphere was lower than that for northern hemisphere
measurements. Bearing such a difference in mind, we expect the hemispheric difference in electron
temperature reported here to be underestimated.

Clearly, both our analysis and that of Breus et al. [2004] reveal a tentative hemispheric asymmetry consistent
with the expectation of elevated electron temperatures within minimagnetospheres [e.g., Krymskii et al.,
2003], despite that the two works derive information on electron temperature with remarkably different
approaches. In Breus et al. [2004], the idealized Chapman model was assumed, with electron temperature
inferred from a comparison in electron density between the two hemispheres. Specifically, they attributed
the electron density difference to difference in O+

2 dissociative recombination coefficient, which is in turn
indicative of difference in electron temperature. In contrast, the idealized Chapman model is not assumed in
this study, with electron temperature inferred directly from the local energy budget at altitudes where the
effect of thermal conduction is likely of minor importance. Clearly, absolute values of electron temperature
can be obtained here, whereas only relative ratios are available with the Breus et al. [2004] approach.

4. Discussions

It is instructive to compare the best fit values of peak electron density, peak altitude, and neutral density
scale height, Nem, zm and Hn, from the revised Chapman model with the values from the idealized Chapman
model, denoted as N′

em, z′m, and H′
n (see Figure 2). The latter are derived following the procedure of Withers

and Mendillo [2005] based on the Taylor expansion of the logarithmic electron density near the M2 peak
(see their equation (5)). The difference between z′m and zm essentially reflects the difference in altitude
between peak electron density and peak electron production. Specifically, we find that z′m is higher than
zm by ≈4.6 km on average, generally consistent with the prediction of Fox and Yeager [2006]. We note that
their result was obtained with model electron density profiles in the dayside Martian ionosphere, whereas
ours is based on realistic data. The difference between z′m and zm is clearly attributed to a positive electron
temperature gradient. This naturally leads to a difference between Nem and N′

em with
(

N′
em − Nem

)
∕

Nem ≈ 5.5% on average based on our analysis.

Of particular interest to this study is the difference in neutral density scale height between the two models,
Hn and H′

n, as shown in Figure 2 (right). The figure reveals that H′
n tends to be systematically larger than Hn

with H′
n − Hn ≈ 2.2 km on average. Such a difference is also related to the electron temperature gradient

which has the effect of broadening the electron density distribution [e.g., Fox and Yeager, 2006]. This means
that for the idealized Chapman model, the observed width in electron density is entirely related to the
neutral density scale height, whereas for the revised Chapman model, part of the width is attributed to the
electron temperature gradient. Such a feature highlights the coupling between the underlying neutral and
electron thermal structures. At the face value, an observed electron density profile could be reproduced by
either the combination of a cooler neutral atmosphere and a steeper electron temperature increase or the
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combination of a hotter neutral atmosphere and a gentler electron temperature increase. It is the condition
for local energy balance (see equation (3)) that breaks the coupling and picks out a unique solution among
all possibilities. This is the whole essence of the revised Chapman model proposed here.

Previous analyses of the radio occultation and radar sounding data of the Martian ionosphere have
indicated a trend of increasing width of the M2 layer with increasing SZA [e.g., Němec et al., 2011;
Sánchez-Cano et al., 2013]. Within the framework of the idealized Chapman theory, this is fully accounted
for by an elevated neutral density scale height or neutral temperature near the terminator, for which no
viable mechanism exists. In this study, however, the SZA variation of the layer width is, at least partly,
attributed to the SZA variation of the electron thermal structure. The modest increase in neutral
temperature as approaching the terminator (see Figure 2 (right)) is a natural result of enhanced neutral
heating via collisions with photoelectrons and/or secondary electrons there.

5. Concluding Remarks

Numerous previous works show that the variations of the Martian ionosphere are in good agreement with
predictions of the idealized Chapman model [Withers, 2009, and references therein], despite that such a
model makes an unrealistic assumption of a constant electron temperature at ionospheric altitudes. The
present work is based on a revised Chapman model assuming an approximate energy balance between
solar EUV heating and CO2 collisional cooling, as recently proposed by Withers et al. [2014]. The model is
analytic in nature and easily implemented but only applicable to the electron distribution near the M2 peak
due to the neglect of thermal conduction and the assumption of a constant thermal energy release of 0.7 eV
per ionization event. With the revised Chapman model, the apparent width of the M2 layer is determined by
both the neutral density scale height and the electron temperature scale height, in contrary to the idealized
Chapman case with the layer width fully determined by the former. The above fact highlights the coupling
between the neutral and electron thermal structures in reproducing an observed electron density profile. It
is the condition for local energy balance that picks out a unique solution among all possibilities.

Implementation of the revised Chapman model to the MGS radio occultation data reveals a clear trend
of elevated electron temperature and a weak trend of reduced electron temperature scale height near
the M2 peak, both with increasing SZA. These results are in conflict with predictions of purely solar-driven
models [Matta et al., 2014]. We speculate that they are indicative of enhanced topside heat influx near the
terminator, presumably related to the SW interactions with the Martian upper atmosphere modulated by
the ambient magnetic field configuration. We also find a tentative asymmetry in electron temperature
between the northern and southern hemispheres, which is consistent with the scenario of elevated electron
temperature within minimagnetospheres.
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