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Abstract

We recently showed that cassette integration and deletion in integron platforms were occurring through unconventional
site-specific recombination reactions involving only the bottom strand of attC sites. The lack of sequence conservation
among attC sites led us to hypothesize that sequence-independent structural recognition determinants must exist within
attC sites. The structural data obtained from a synaptic complex of the Vibrio cholerae integrase with the bottom strand of
an attC site has shown the importance of extra helical bases (EHB) inside the stem-loop structure formed from the bottom
strand. Here, we systematically determined the contribution of three structural elements common to all known single-
stranded attC site recombination substrates (the EHBs, the unpaired central spacer (UCS), and the variable terminal structure
(VTS)) to strand choice and recombination. Their roles have been evaluated in vivo in the attI6attC reaction context using
the suicide conjugation assay we previously developed, but also in an attC6attC reaction using a deletion assay.
Conjugation was used to deliver the attC sites in single-stranded form. Our results show that strand choice is primarily
directed by the first EHB, but the presence of the two other EHBs also serves to increase this strand selection. We found that
the structure of the central spacer is essential to achieve high level recombination of the bottom strand, suggesting a dual
role for this structure in active site exclusion and for hindering the reverse reaction after the first strand exchange. Moreover,
we have shown that the VTS has apparently no role in strand selectivity.
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Introduction

Integrons are DNA elements that acquire open-reading frames

through site-specific recombination and convert them to function-

al genes by ensuring their correct expression. Integrons were first

identified, in the 19809s, as a device used by Gram negative

bacteria to acquire and disseminate antibiotic resistance genes

[1,2]. More recently, the role of integrons in bacterial evolution

has been extended by the identification of chromosomal integrons.

Chromosomal integrons include the superintegron subfamily

mainly found in Vibrionaceae, which can contain arrays of hundreds

of various genes [3–6]. Unlike the integrons involved in the

dissemination of drug-resistance genes, which are all associated

with mobile elements, chromosomal integrons are generally

sedentary components of the genome in environmental bacteria.

However, the expression of both the chromosomal and mobile

integron integrases is controlled by the SOS response [7] and

cassette swapping between these different integrons can occur [8].

All integrons characterized to date are composed of three key

elements necessary for the capture of exogenous genes: an integron

integrase (IntI), a recombination site (attI), and a strong resident

promoter (Pc) (for a review see [9,10]). Gene cassettes correspond

to a promoter-less gene associated with an attC recombination site

[11,12]. The attC6attI rearrangements catalyzed by IntIs lead

preferentially to cassette integration at the proximal attI site,

downstream of the resident promoter [13]. IntIs also mediate

attC6attC recombination events, resulting in gene cassette deletion

through circular intermediates [11].

IntI belongs to the tyrosine recombinase (Y-recombinase) family

[14], which acts by forming and resolving Holliday junctions

according to the ‘‘strand-swapping isomerization’’ model. This

highly heterogeneous family catalyzes rearrangements, which are

used to accomplish a variety of important biological functions [14].

The members of this family that have been studied in depth share

common characteristics: the core recombination site structure and

the recombination mechanism. The recombination site is

invariably composed of a pair of conserved 9- to 13-bp inverted

binding sites separated by a 6- to 8-bp central region and the

recombination process occurs between two identical or almost

identical core recombination sites (for reviews see references

[15,16]). The integron integrases form a subclass in this family,

which differs from the other Y-recombinases by the presence of a

specific additional protein segment required for their activity

[17,18]. Furthermore, both the attI and attC recombination sites

have particular architectures which differ from the canonical Y-

recombinase sites [19].

The attI sites contain a degenerate core recombination site and,

in the specific case of attI1, two direct repeats which seem to be

required for the integrative recombination reaction [20–22]. The

structure of the attC sites is more complex (Figure 1). These sites
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show only poor sequence conservation and their lengths vary from

57 to 142 nucleotides (nt) [23]. The sequence similarity of the attC

sites are found at their boundaries, and correspond to two

heptanucleotides boxes, now called R9 and R0 [19]. These two R

boxes are part of two potential antiparallel recombination core

sites, R0-L0 and L9-R9 (also termed 1L-2L and 2R-1R, respectively

[23]). While recombination only occurs at L9-R9 (between the C

and the adjacent A of the bottom strand R9 box), directed

mutagenesis showed that R0-L0 is also essential [23]. L9 and L0 are

inverted repeat sequences that show little sequence conservation

with the exception of a G, specifically present in the L0 box with

no complementary nt in the L9 box [23,24]. This base is essential

for the attC6attC deletion reaction to proceed [25]. The overall

structure of the attC site is palindromic and allows the attC single

strand (ss) to adopt a double stranded (ds) DNA-like structure by

annealing of L0 to L9 and R0 to R9, which contains almost all the

structural features of a canonical recombination site (Figure 1)

[23,24,26]. For most gene cassettes, self-pairing on the same ss can

be extended beyond the 7 nt R9 and R0 sequences, to a total of 9–

11 consecutive complementary nt [24,27]. It has been shown for

attCaadA1 [28,29], attCaadA7 and VCR2/1 [30], the attC site of the

Vibrio cholerae superintegron cassettes, that IntI1 binds specifically

to the bottom strand (bs) of a ss-attC DNA but not to top strand (ts)

ss-attC DNA or to the ds-attC site.

We have previously shown that the ability of the IntIs to

mediate recombination between the two structurally distinct attI

and attC sites is driven by an unconventional recombination

pathway in which the IntIs recombine their own attI sites under ds

form, with a bs-attC site under ds-DNA like form [30]. The first

strand exchange generates a pseudo Holliday junction, where a

classical resolution by a second pair of strand exchanges would

lead to the formation of covalently closed linear molecules.

Productive resolution could only be achieved by replication of the

pseudo Holliday junction intermediate. Indeed, structural studies

have shown that the second strand exchange was prevented in the

attC6attC synaptic complex and that the recombination catalyti-

cally involved only two of the four integrase monomers forming

the synaptic complex [25].

Author Summary

Integrons play a preponderant role in the development of
multiple antibiotic resistances among Gram-negative
bacteria. Their success is rooted in their unique aptitude
to assemble genes through a site-specific recombination
process. They have recently been shown to use an
unconventional recombination pathway, which involves
recombination between a canonical double stranded attI
site and a uniquely folded single stranded attC substrate.
Due to its complex and variable structure, which includes
several unpaired regions and extrahelical nucleotides,
recognition of the attC site was elusive. Here, we
determined the contribution of each of the different
structural elements common to many folded single
stranded attC substrates, in the recognition and recombi-
nation efficiency by the integron recombinase. We found
that a single specific extrahelical nucleotide is responsible
for the choice between the two anti-parallel complemen-
tary strands of each attC site, an essential discrimination
for guaranteeing the expression of the acquired gene by
the integron platform. These studies open the way to the
design of synthetic sites and the use of this powerful
loose-specificity recombination system for various gene
transfer applications.

Figure 1. attC recombination sites. Sequence alignment of the bottom strands of the VCR2/1, attCereA2, and attCoxa2 sites is shown. The inverted
repeats L’, L0, R’, and R0 are indicated by grey boxes. The asterisks (*) show the conserved nucleotides between the three attC sites and the bold
letters correspond to the three EHBs. The secondary structures of the bottom strands of the three attC sites are represented below and were
determined using MFOLD [38]. Black arrows show the cleavage point.
doi:10.1371/journal.pgen.1000632.g001

Strand Choice in Integron Recombination
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During the ds-attI6ss-attC integrative reaction strand selectivity

exists, as both in vitro and in vivo data show that only the attC-bs

could be recognized and recombined by IntI1. The attC conserved

sequences are limited to 3 nt in both boundaries, the AAC and

GTT of their R0 and R9 boxes (Figure 1). Their complementarities

and their relative mirror location on each of the two strands,

preclude them for ss choice determinants. The large variability

shown by the rest of the sequence and the importance of the attC-

bs folded structure led to the hypothesis that sequence indepen-

dent structural recognition determinants must exist within these

sites [29,30]. The predicted attC-ss folded structures show that

three structural features distinguish the top strand (ts) and bs-

hairpins, and could therefore be responsible for attC strand

selectivity. The annealing of the R0-L0 and L9-R9 sequences, which

contain two non-complementary spacer regions, leads to the

formation of the first structural element, the unpaired central

spacer (UCS), which differs between both single strand hairpins

(Figure 2). The second structural feature, the extra-helical bases

(EHB), correspond by definition to the single bases located on the

R0-L0 arm of the symmetrical attC sequence that have no

complementary nt on the R9-L9 arm (Figure 2). Depending on

the attC sites, there are two or three EHBs (Figure 1). Among these,

the G present in the L0 box and the T found 6 to 8 nt downstream

of it, are particularly conserved (Figure 1). The last structural

feature is what we define as the stem terminal structure or VTS

(for Variable Terminal Structure), which corresponds to the

sequence located at the top of the L stem (Figure 2). The VTS

varies in length among the various attC sites, from a predicted 3

unpaired nt to a complex branched secondary structure in the

larger sites, such as the VCR site (Figure 1 and Figure S1).

Due to their symmetrical sequence, the attC-ts and -bs hairpins are

distinguished by these interruptions in the stem, which could direct

attC site strand selectivity. Recently, the crystal structure of VchIntIA

(the V. cholerae superintegron integrase) bound to a substrate

mimicking the folded attC-bs gave some indications on how integron

integrases accommodate and recognize such substrates [25]. The 3D

structure shows that the protein-DNA interface is almost entirely

composed of non-specific protein-to-DNA phosphate interactions,

and that the two EHBs (bs T120 and G200 in [25]), which are

conserved among all the folded attC sites, are bound in two

hydrophobic pockets and seem to be the key elements for attC-bs

recognition and synapse assembly. Figure 3 shows the different

interactions between the VCR substrate and the IntI1 residues,

based on the modeling we previously made [31] from the structural

Figure 2. Schematic representation of the modifications introduced in the VCR2/1 site. The wild-type VCR2/1 site is shown in the double
and single stranded forms. From these, the different modifications are shown: UCS inversion, UCS pairing, 65-bp VTS deletion, EHB inversion, and EHB
deletion. The nt modifications are shown in red. The R0, L0, L’, and R’ boxes of the double strand VCR2/1 site and the R and L boxes of the folded single
strand VCR2/1 site are indicated by grey boxes. UCS: unpaired central spacer, EHB: extra-helical base, VTS: variable terminal structure.
doi:10.1371/journal.pgen.1000632.g002

Strand Choice in Integron Recombination
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study of VchIntIA in complex with the same substrate [25], These

two EHBs interact in cis and in trans with the recombinase monomers

in order to position them along the DNA backbone and to mediate

the higher order assembly of the synaptic complex.

To push these studies further and determine the single strand

choice determinants involved in the integron recombination

mechanism, we performed a molecular dissection of a typical attC

site of the V. cholerae superintegron cassettes, the VCR2/1 site [3].

Figure 3. Schematic representation of the protein-DNA contacts between the IntI1 integrase and the VCRbs. IntI1 interactions with the
VCRbs are derived from the model we previously made [31] based on the crystal structure of the VchIntIA –VCRbs complex [25]. The IntI1 amino acids
(aa) are indentified by name (three letters code) and position, while the corresponding aa in VchIntIA are given in italics. The amino acids that are
either not conserved between IntI1 and IntIA or among other sequenced integron integrases are faded. All hydrogen bonding protein contacts
,3.5 Å are shown. Magenta circles depict protein-phosphate contacts and the position of base-specific hydrogen bonding is shown in green. The aa
residues specifically involved in interaction with the EHBs G200 (Ring stacking and hydrogen bonds) and T120 (Stacking interactions between ring
structures, dashed lines) are on grey backgrounds. The colour code for each IntI1/IntIA subunit is given in the inset. Contacts that are equivalent
between the attacking and non-attacking interfaces are denoted by (Sym).
doi:10.1371/journal.pgen.1000632.g003

Strand Choice in Integron Recombination
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This site has been used in different recombination studies using

both IntI1 and the VchIntIA and shown to have properties similar

to the other attC paradigm, the attCaadA1/7 sites [30–32]. Moreover,

this site was the substrate in the structural study of VchIntIA [25].

Under ss form, the stem of the VCR2/1-hairpins contains 31-bp

(R9-L9 arm) and 34-bp (R0-L0 arm) on each paired arm with an

UCS composed of 5 nt from each arm (3 unpaired and 2 paired).

The remainder of the folded structure, the central 65-bp, forms a

large branched VTS [30] (Figure 1). Three EHBs are contained in

the VCR2/1 ss structure (G16T20T24), which are conserved among

the different VCR sequences and in contact with the integrase in

the synaptic complex [25] (Figure 1).

Using the suicide conjugation assay we previously developed

[30], we studied the role of these different structural elements of

the folded ss VCR2/1. We present data which strongly support that

the first EHB, the conserved G of the L0 box, is responsible for

strand selectivity. Furthermore, we show that even if the two other

EHBs are not responsible for strand selectivity, they are essential

for full recombination efficiency. Finally, we assess the role of the

UCS and the role of the VTS. We show that these last two

structures do not participate in strand selectivity. However, we

show that the orientation and the shape of the UCS are critical for

the efficiency of recombination.

Results

Single strand choice determinants in the attC6attI
recombination

Our objective was to identify the determinants of attC site bs-

selectivity during cassette integration. The importance of the

location, the orientation, and/or the sequence conservation of the

different structural features of the VCR sites for strand selectivity

have been analyzed by performing a series of parallel nucleotide

inversions, deletions and/or substitutions. In order to facilitate the

understanding of the results, the sequence modifications we tested

and their classifications are shown modelled on a VCR in Figure 2.

Here, ‘‘inversion’’ corresponds to the re-location of a single base,

or of a short sequence, at the corresponding location on the mirror

sequence. For example, when the EHBs are inverted, they are

deleted from the R0-L0 arm and inserted in the R9-L9 arm

(Figure 2). Therefore, the VCR-ts becomes more like the former

VCR-bs, and vice versa. Here, ‘‘deletion’’ consists in the

elimination of the nucleotides corresponding to the ss VCR EHBs

or of the VTS (Figure 2). Finally, the ‘‘substitutions’’ we tested

exclusively correspond to the replacement of the conserved extra-

helical G16 by C, A or T, or to the elimination of the UCS

asymmetry by making it complementary (UCS pairing, Figure 2).

In a first set of experiments, we tested and compared the effect

of the different mutations on the recombination of both the

corresponding attC-bs and -ts using our suicide conjugation assay

(see Methods as well as Figure 4 for a diagram of the possible

outcomes and how one can discriminate between them by PCR).

The results are represented in Figure 5. To facilitate their

interpretation, the phenotypic effects of the mutations are

presented as the ratio between the frequencies obtained for the

tested attC-ts or -bs mutant and the recombination frequency of

the wt-attC-bs. The location of the recombination point in either

R9 or R0 after determination by PCR and sequencing is also given

(see Materials and Methods and Figure 4). We considered that

strand selectivity is shifted from bs to ts, when recombination

occurred in the R0 box in all clones sequenced for each mating

experiment. It is also important to stress that the attI6attC

cointegrates made through recombination in the attC R9 box after

transfer of the attC-ts or in the attC R0 box after transfer of the attC-

bs, both correspond to recombination events involving the

corresponding complementary strand, after its synthesis in the

recipient strain. Furthermore, it should be noted that interestingly,

for each mutated attC site tested, only one recombinant species was

identified, corresponding to either bs or ts selectivity. Therefore, if

the recombination events occur in the R9 box after the attC-ts

injection, this would indicate that the top strand is insensitive to

recombination. It also means that in this system, the injected

strand is always favored even if it is less recombinogenic than the

other one. Inversely, when both attC strands are accessible for

recombination under replicative conditions, the most recombino-

genic one is integrated at the attI site and the strand selectivity is

then reduced to this strand (data not shown).

The wild type VCR site. In our suicide conjugation assay,

VCR2/1 integration at the attI1 site occurs at a rate of 1.9561022

when the bs is transferred (wt-VCR-bs) or at 1.661026 when the ts

is transferred (wt-VCR-ts) to the recipient cell, giving a bs/ts

recombination rate of 1.226104. When normalized with the wt-

VCR-bs frequency, the relative recombination rates are 1 for the

wt-VCR-bs and 8.261025 for the wt-VCR-ts (Figure 5). In both

cases, recombination occurs in the R9 box, showing that in both

cases it is the bs that is recombined, either direcly (bs injection) or

after synthesis of the complementary replicated strand (ts injection)

(Figure 4b and 4d).

EHB mutations
EHB inversions. We inverted all three EHBs, G16, T20 and

T24 (mut1-VCR) and observed a 2.86105-fold decrease in the

recombination rate of the VCR-bs, but the recombination point

remained in the R9 box, and a converse 2.406102-fold increase in

VCR-ts recombination occurred, with a shift of the recombination

point to the R0 box. These results show that inversion of the three

EHBs at once changes strand selectivity.

To investigate the importance of each of these three EHBs, we

performed sequential single base inversions. The G16 (mut2-VCR),

T20 (mut3-VCR) or T24 (mut4-VCR) inversions lead respectively

to a 50-, 16.6- or 3.6-fold decrease of the VCR2/1-bs recombi-

nation frequency. The mut3- and mut4-VCR-ts are recombined in

the R9 box at rates similar to the wt-VCR-ts (2.4- and 1.5-fold

reduction, respectively). By contrast, even though the mut2-VCR-

ts is recombined only slightly more efficiently (4.3-fold augmen-

tation) than the wt-VCR-ts, this mutation is sufficient to shift the

recombination point to the R0 box. These results suggested that

the extra-helical G16 alone specifies strand selectivity. To confirm

these observations, we deleted the two extra helical T in mut2-

VCR, (mut8-VCR in Figure 5), and found the same shift in

recombination location for the ts strand. As a control we deleted

these two Ts in the wt site (mut9-VCR in Figure 5) and observed

that the recombination site remained in the R9 box after transfer

of either of the two strands.

Starting from the G16 inversion (mut2-VCR), we additionally

inverted either T20 (mut5-VCR) or T24 (mut6-VCR), and

observed that the corresponding bs were respectively recombined

7.5- or 18.7-fold less than the mut2-VCR-bs, with the recombi-

nation point remaining in the R9 box. Conversely, we showed a

34.6- or 62.4-fold increase of the corresponding ts recombination

frequency with a shift of the recombination point to the R0 box in

both cases.

On the other hand, even though co- inversion of T20 and T24

(mut7-VCR) lead to a 33.3-fold decrease of the bs recombination

frequency, and to a minor increase of the corresponding ts

recombination (3.3-fold increase), it does not modify the location

of the recombination point in the R9 box. These results

Strand Choice in Integron Recombination
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demonstrate a cumulative effect of the extra-helical G and the two

others EHBs (T20 or T24).

Extra-helical G16 substitution. We then substituted the

extra-helical G16 by bases A (mut10-VCR), T (mut11-VCR) or C

(mut12-VCR) to determine if the nature of the first EHB is critical

in this recombination reaction. We only observed a minor

decrease of the corresponding bs recombination frequency, from

a 1.2- and 1.8-fold reduction for the A16 and T16 mutants, to 2.7

fold for the C16 mutant. Therefore, the nature of the first EHB is

not essential for strand selection or the recombination efficiency.

Figure 4. Possible recombination points of the attC6attI cointegrates and strategy to discriminate between them. The original
plasmids containing the attC site (pSW-attC) and the attI site (pSU38-attI1) are represented by black and blue lines, respectively. The attC-bs appears
in red, to facilitate the visualization of the attC site orientation in the cointegrates. The sequences of the recombination points of the newly formed
attC and attI are shown. Four recombination events are represented: a, the recombination event occurring in the R’ box after attC-bs transfer; b, the
recombination event occurring in the R0 box after attC-bs transfer; c, the recombination event occurring in the R’ box after attC-ts transfer; and d, the
recombination event occurring in the R’ box after attC-ts transfer. The positions and orientations of the oligonucleotides (SW23begin, Sw23end, MRV,
and MFD) used in this study to confirm the attC6attI cointegrate formation and recombination point localization are shown in green. Note that each
a, b, c, and d co-integrates has its own PCR signature.
doi:10.1371/journal.pgen.1000632.g004

Strand Choice in Integron Recombination
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EHB deletion. We then deleted the G16, T20 and T24 EHBs

(mut13-VCR). This leads to a 6.2-fold decrease in the bs

recombination frequency, but the recombination point is still

located in the R9 box. Interestingly, the mut13-VCR ts is

recombined at a 50.7-fold higher rate than the wt-VCR-ts and

its recombination point is shifted to the R0 box. Thus the absence

of EHBs does not prevent the attC6attI recombination process but

leads to a partial loss of strand specificity.

The unpaired central spacer mutations
UCS G122 substitution. The nt located just downstream of

the AAC of the R9 box is a G in most attC sites (Figure S1). In order

to test if this conservation was linked to the recombination reaction,

we substituted this G (G122) in the VCR2/1 site (Figure 5), by a C

(mut14-VCR), an A (mut15-VCR) or a T (mut16-VCR) and tested

the properties of both strands for those three substitutions. All three

have a limited impact on the recombination, with at worst a 2.8-fold

reduction of the corresponding bs recombination rate and a 4.7 fold

increase of ts recombination (Figure 5). Therefore, despite a strong

conservation of the G122 in most attC sites, we failed to observe a

significant role for this specific G in the recombination reaction that

might explain this conservation.

UCS inversion. To probe the importance of UCS orientation

in strand selectivity, we inverted the UCS (mut17-VCR). This

leads to a 4.76102-fold decrease in the bs recombination

frequency and to 7.5-fold decrease in the ts recombination

frequency, but the recombination point remained in the R9 box for

both strands. Thus, the UCS bulge orientation does not influence

strand selection but its proper orientation is necessary for optimal

recombination.

EHB and UCS co-inversion. We tested the effect of the

EHB and UCS co-inversion on strand selectivity (mut18-VCR).

We observed that the mut18-VCR-bs recombination rate was

decreased by 3.26104-fold and that the recombination point was

shifted to the R0 box, showing that recombination involved the

replicated strand from the transferred bs. Conversely, we found a

16104-fold increase in the mut18-VCR-ts recombination

frequency and, as previously seen after the EHBs inversion

(mut1-VCR), the recombination point shifted to the R0 box. Thus

the change of strand selectivity resulting from the EHBs inversion

Figure 5. Sequence alignment of the attC mutant sites, and their recombination properties. The bs sequences of the wild type VCR2/1 (wt-
VCR), attCereA2 (wt-ereA2), and attCoxa2 (wt-oxa2) sites are shown, and the respective position of each nt is numbered, with position 1 as the last nt of
the R0 box. Bold numbers identify the position of the EHBs. For the mutant sites, a point corresponds to an unchanged nt, D represents a deleted nt,
and a bold letter is an exchanged nt. The R’, L’, L0, and R0 boxes are highlighted by grey boxes. The recombination frequencies obtained after
injection of the attC-bs (first column) or the attC-ts (second column) are normalized with the wt-attC-bs frequency and represent a mean of three
independent experiments. The location of the recombination events, R’ or R0, were determined (see Materials and Methods and Figure 4). The arrows,
below each scheme, show the R’, L’ and L0, R0 arms.
doi:10.1371/journal.pgen.1000632.g005

Strand Choice in Integron Recombination
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is maintained when the EHBs and the UCS are co-inverted, and ts

recombination is brought to the wt-VCR-bs level.

EHB deletion and UCS inversion. We carried out the UCS

inversion in the site lacking the EHBs (mut19-VCR) to investigate

the importance of UCS orientation on the recombination rates

and the location of the recombination point established for the

mut13-VCR-bs and -ts. We observed the same trends as with the

EHBs deletion alone, but with a much higher impact: a 2.56102-

fold decrease of the bs recombination frequency, and a converse

increase of the ts recombination (8.86102-fold). Interestingly, as

for the EHBs deleted site (mut13-VCR), the location of the

recombination point depends on the strand transferred during the

conjugation event. When the bs is transferred, the R9 box is

targeted, while the R0 box is targeted when the ts is transferred.

EHB deletion and UCS pairing. To determine if the UCS

bulge shape was responsible for the variation in recombination

rate observed between the -bs and -ts lacking the EHB site (mut13-

VCR), we further introduced mutations in the L9-R9 spacer region

(AAACG instead of GCCCG) that allow its pairing with the L0-R0

spacer in the ss form (mut20-VCR). The mut20-VCR-bs

integration at the attI1 site was drastically affected, as we

observed a 8.56104-fold decrease in the recombination

frequency. The mut20-VCR-ts recombination rate was slightly

higher than that of the wt-VCR-ts (2.8-fold increase). As for the

two previous EHB deleted VCR2/1 sites (mut13-VCR and mut19-

VCR), the recombination point was found in the R9 box when the

bs was transferred or in the R0 box when the ts was transferred.

The full pairing of the UCS alone (by substitution of GCCCG by

AAACG in the L9-R9 spacer region) leads to a 27-fold decrease in

the recombination frequency of the bs (mut 21-VCR, Figure 5).

Role of the VTS
To evaluate the role of the large VCR2/1 VTS (from nt 34 to

98, inclusive, Figure 1) on the efficiency of VCR2/1 integration at

the attI1 site, we replaced this 65-bp VTS by a 59-GAA triplet

(mut22-VCR) or by a 59-TTC triplet (mut23-VCR). These

substitutions only had minor effects on bs recombination: a 1.6-

fold increase for mut22-VCR and a 2.4-fold decrease for mut23-

VCR. When tested, the mut23-VCR-ts is recombined at a rate

identical to the wt-VCR-ts site and in the R9 box as well,

suggesting that the VTS does not play a role in strand selectivity

for such sites.

Study of the EHB inversion consequences in two other
sites: attCereA2 and attCoxa2

The attCereA2 and the attCoxa2 sites are among the smallest attC

sites characterized to date [32,33]. Under ss form, the predicted

hairpin structures formed are almost entirely composed of a single

stem (Figure 1). Their predicted VTS are reduced to an unpaired

59-GAA triplet for the attCereA2 and to a 7 unpaired nt structure

which forms a larger bulge for the attCoxa2 site. They also differ by

their number of predicted EHBs, 2 for attCereA2 and 3 for attCoxa2, in

essentially the same position compared to VCR2/1. Integration at

the attI1 site occurs at rates of 1.2561022 and 2.561022, for the

attCereA2 and attCoxa2 sites respectively, after transfer of the bs and of

561026 and 7.7561026 after transfer of the ts. We co-inverted all

EHBs in both sites (mut24-ereA2 and mut25-oxa2, Figure 5) and

found that, as for the VCR, this leads to a polarity change; the

corresponding ts becoming the preferred strand, with a recombi-

nation point located in the R0 box. These changes are

accompanied by a correlated decrease in the recombination rate

of the corresponding bs, the larger effect being seen with the

attCoxa2-bs. However for the two mutant sites, recombination still

occurs in the R9 box, as is the case for the mut1-VCR mutant

(Figure 5).

Single strand choice determinants in attC6attC
recombination

In the attC-bs6attI reaction, the attC site is the only site that

carries EHBs, since the attI site is only recognized in its canonical

ds DNA form [28]. The 3D structure of the attC-bs6attC-bs

synaptic complex with the V. cholerae integrase shows that the

architecture of the complex could rely on the EHB binding by the

integrase [25]. In order to establish if the different EHB mutations

tested in the integration reaction context have similar properties in

this reaction, we designed an attC6attC deletion assay, also based

on conjugation as a means to deliver a suicide ss substrate. In this

assay, the recombination events are selected on the establishment

of a Pir+ phenotype that is necessary to stabilize the pSW suicide

vector in the recipient strain. Expression of the pir gene is enabled

only by an attC6attC reaction catalyzed by IntI1 that leads to the

deletion of a synthetic attCaadA7-lacIQ-VCR2 cassette located

between a Ptac promoter and the pir116 coding sequence

(Figure 6A). The set-up allows transferring either of the attC

strands depending on the relative orientation of the oriTRP4 origin

of transfer (see Materials and Methods and Figure 6A). When the

plasmid carries the two wt attC sites, cassette deletion occurs at a

frequency of 3.3561024 or 4.8561026 when the transferred

strand carries the attC-bs or -ts, respectively. In order to facilitate

the understanding of the results, the frequencies measured are

normalized with the attCaadA7-wt6VCR-wt frequency obtained

after the transfer of their bs (Figure 6B). Therefore, the relative

recombination rates are 1 for the attC-bs and 1.4561022 for the

attC-ts. It should be noted that as for the integration assay, in both

cases, the recombination events were localized in the attC R9

boxes.

We first tested the effect of the EHB deletion on attC6attC

recombination since this deletion had little effect on attC6attI

recombination (a ,6 fold decrease for mut13-VCR, Figure 5). In

the cassette deletion context, when made in the attCaadA7 site

(mut26-VCR), elimination of the EHBs leads to a reduction of

1.36102-fold in the deletion frequency or to a 4.96102-fold

reduction when the EHBs were deleted from the VCR2/1 site

(mut27-VCR, Figure 6B). Furthermore, when performed in both

sites at once (mut28-VCR), deletion of the EHBs completely

abolishes cassette deletion (Figure 6B).

Since the extra-helical G16 substitution by T, A or C had a

minor effect on the integration of the VCR2/1 site at the attI1

site (a 37% reduction for the G.C substitution in mut12-VCR,

Figure 5), but seemed to play a key role in the establishment of

the attC-bs6attC-bs synaptic complex, we tested the effect of

these substitutions on cassette deletion efficiency. We introduced

them in the VCR site, as in the integration assay, while the

attCaadA7 was either left unmodified (mut29-VCR, mut30-VCR

and mut31-VCR) or deleted of its two EHBs (mut32-VCR,

mut33-VCR and mut34-VCR). In conjunction with the wt

attCaadA7 site, the different substitutions have very different

effects (Figure 6B). While, the G.C substitution (mut31-VCR)

seems to have a limited impact on the deletion frequency (1.2-

fold increase), the G.A substitution (mut30-VCR) leads to a

minor decrease of the deletion frequency (1.7-fold). On the

other hand, the G.T substitution (mut20-VCR) leads to a

sizable decrease of the deletion frequency (68-fold). Finally,

when coupled to attCaadA7 DEHB, both effects are superimposed.

The G.T substitution (mut32-VCR) had a larger effect, with a

relative frequency decrease to 6.9561024 (10.7-fold in compar-

ison to attCaadA7DEHB6VCRwt). The G.A substitution
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(mut33-VCR) decreased the attCaadA7DEHB effect by a factor of

,3 and the G.C (mut34-VCR) has only a minor effect (1.3-

fold decrease) (Figure 6B). The effects of EHBs deletion and/or

EHB substitution are thus amplified in the attC6attC recombi-

nation when compared to those in the attC6attI recombination

context.

Figure 6. Schematic representation of the in vivo deletion assay and recombination frequencies of the different mutants. (A)
Schematic representation of the in vivo deletion assay. The in vivo deletion assay is based on the conjugation assay previously developed for the in
vivo integration assay. In its original form, the pSW carrying the synthetic cassette [Ptac]-attCaadA7-lacIq-VCR2/1-pir116* is dependent on the P protein
(green ovals) produced in trans in the donor strain (left), as the pir116* gene is not expressed. As the recipient strain lacks the pir gene, the pSW
plasmid replication can only be achieved after the deletion of the lacIq gene by an attCaadA76VCR2/1 recombination reaction mediated by IntI1 (blue
ovals), which allows the expression of pir116* gene from the Ptac promoter. The recombination events are selected on the Cm resistant marker of the
pSW plasmid. The assay is presented in more detail in the Materials and Methods. The pir116, lacIq, and cat gene are, respectively, schematized by
green, red, and purple arrows, and their promoters are indicated by the same colours. The origin of replication (oriVR6Kc) and the origin of transfer
(oriTRP4) of the pSW-attC plasmid are shown by a white oval and an orange bent rectangle, respectively. (B) Recombination frequencies obtained after
bottom (bs) or top (ts) strand injection. The recombination frequencies are normalized with attCaadA7WT6VCRWT-bs frequency and represent a mean
of three independent experiments. The location of the recombination events were determined (see Materials and Methods).
doi:10.1371/journal.pgen.1000632.g006
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Discussion

Directionality of the recombination process
In site-specific recombination systems, the polarity of the

partner sites and their relative orientations are essential for the

biological functions embedded in the recombined DNA. Indeed, it

precisely directs the choice between deletion and inversion of

DNA segments in intramolecular recombination reactions and

determines the orientation of the integrated DNA sequences in

intermolecular recombination events.

For most members of the Y-recombinases family which have

been studied in detail, it is the spacer present between the two

recombinase-binding elements of the core site that establishes the

overall polarity of the sites [34]. Sequence homology in the spacer of

the two sites is absolutely required and its asymmetry dictates the

directionality of the recombination event. The creation of

heterologies between the two partner spacers abolishes the

isomerization step and the second strand exchange cannot occur.

The simplest systems, exemplified by the Cre and Flp recombinases,

do not require accessory factors. Indeed, the core recombination site

contains all the information necessary to complete the recombina-

tion reaction. In more complex systems, the polarity is also encoded

in the recombination locus, but it also involves accessory sequences

and proteins that allow the assembly of a defined complex and drive

the overall reaction in a given direction.

Such a polarity in the recombination process also governs the

integron system. The cassettes are usually integrated in only one of

the two possible orientations within an integron, the one allowing

expression of the carried genes from the Pc promoter. For the

integron, the recent discovery that cassette recombination involves

a single strand substrate has raised a number of questions

regarding the specific recognition of the attC bottom strand as

the substrate for recombination. Indeed, the polarization of the

integron recombination system is based on strand selectivity, the bs

being recombined rather than the ts. How is this selectivity

brought about? Since no accessory factor seems to be required for

the recognition and recombination of the attC site [25], the

polarity had to be encoded in the attC core recombination site.

The lack of sequence identity among the various attC sites (Figure

S1) and the overall conservation of the attC-bs folded structure,

independent of its sequence, led to the hypothesis that sequence-

independent structural recognition determinants must exist within

attC sites [29,30]. This assumption was strengthened by the

structural studies which showed that the protein-DNA interface

was almost entirely composed of non-specific protein-to-DNA

phosphate interactions (Figure 3) [25,31].

Due to the intrinsic symmetry of the attC sequence, the

predicted attC-bs and -ts secondary structures only differ by three

conserved structural features, the unpaired central spacer (UCS)

separating the R and L boxes, the two to three extra-helical bases

of the L stem (EHB) and the variable terminal structure located at

the top of the L stem (VTS). Using in vitro binding experiments

between derivatives of the attCaadA1-ts or -bs and IntI1, Sundström

and colleagues identified several alterations resulting in ts

recognition with a reciprocal loss of binding to the bs [29]. They

mainly found that transfer of the EHB from the R0-L0 arm to the

R9-L9 arm and co-inversion of the VTS 59-GAA triplet were

necessary to obtain full binding to the attCaadA1-ts oligonucleotide.

We present here an in vivo study of the role played by the three

conserved structural features, using our suicide-conjugation assay

[30] to deliver the modified attC-ts or -bs into a recipient cell

expressing the IntI1 integrase and carrying the attI1 partner site

[30]. This assay allows us to study the recombination reactions in

biological conditions and in the presence of the partner attI site. In

contrast, the oligonucleotide binding-based experiments only

concern a single conformational state of the site that, although

useful, is far from its biological state. We studied the VCR site, one

of the attC paradigms and for which we know the 3D structure of

the attC-bs6attC-bs synaptic complex.

The distinct roles of the attC sites9 structural features
The extra-helical G16 specifies the strand selectivity.

After conjugation, the relative recombination rate of after bs and

ts injection differed by 1.226104-fold. In both cases the

recombination point was located in the R9 box, showing that

after ts transfer, recombination occurred from the replicated

complementary bs.

We found that inversion of the G16 alone (mut2-VCR), is

sufficient to lead to the relocation of the recombination point from

the R9 to the R0 box when the ts is transferred showing that it now

the injected ts that is directly recombined, while, neither the

inversion of T20 or T24 alone (mut3-VCR and mut4-VCR), nor

the T20 T24 co-inversion (mut7-VCR), change the R9 box

recombination point location after ts injection (Figure 5). These

results demonstrate that G16 is responsible for strand selectivity.

However, even if they do not intervene at this step, inversion of

T20 T24 increases the recombination frequency of the ts with a

reciprocal decrease of the bs recombination efficiency. The results

obtained with the attCereA2 and attCoxa2 sites, when all the EHBs

were co-inverted (mut24-ereA2 and mut25-oxa2) show that this

rule can likely be extended to other attC sites.

One should notice however, that the recombination rate of the

inverted EHB mutant ts remains lower than the corresponding

WT attC-bs, (for instance, at best 50-fold lower than WT-bs, for

the VCR2/1 derivatives). In addition, when the attC-bs of the

different G16 inverted mutants are delivered by conjugation, one

observes that the recombination event, though in most cases

occurring at a frequency lower than the corresponding ts, always

involves the R9 box. This observation suggests that the rest of the

structure, most certainly the UCS (see below) keep an imprint for

the strand recognition.

The nature of the first EHB is not essential for the VCR2/1

recombination. The alignment of hundreds of attC shows that

the first EHB is almost exclusively a G ([24] and Figure S1). This

conservation together with the specific interactions made with the

VchIntIA integrase in the attC6attC synaptic complex [25] led us to

test if its substitution by a different base would be deleterious to the

recombination efficiency in our assay. We therefore substituted G16

by an A, a T or a C (Figure 5). We only observed at most a 2-fold

decrease of the bs recombination efficiency. When tested in the

context of our attC6attC deletion assay, we also observed a limited

effect, though different from those obtained in the attI6attC

reaction. Indeed, the only notable effect was seen for the G.T

substitution which reduced the deletion rate to ca 1.5% of WT. We

also tested these 3 substitutions with the partner attCaadA7 site devoid

of its EHB. Deletion of the EHB in the attCaadA7 decreased the

deletion frequency to less than 1% of the WT frequency, and we

found that the G16 substitution in the second site had the same effect

to that observed when coupled to the WT aadCaadA7 (Figure 6B).

Deletion of the EHB leads to a partial depolarization of

the VCR2/1 site. Deletion of the three VCR EHBs leads to a

depolarization of the site, visible in our suicide recombination

assay (mut13-VCR, Figure 5). However, this depolarization is only

partial as the mut13-VCR-ts recombination frequency is ,40-fold

lower than the mut13-VCR-bs.

Interestingly, we had previously shown that the attC6attC deletion

recombination reaction catalyzed by VchIntIA cannot occur in the

absence of the EHBs and in particular not in the absence of the
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conserved G16 [25]. We found the same inability for IntI1 to perform

the attC6attC recombination when both attC sites are devoid of their

EHBs (Figure 6), while deletion of the EHBs in only one of the two

sites decreased the relative recombination frequency to, at most, 7.10-

3 of the WT one (Figure 6B). Recognition and binding of the attI site

by the integrase follow different rules. Even if one ds site lacks EHBs,

deletion of the EHBs in the partner attC sites affected the integration

reaction to a lesser extent (,6 fold decrease) than the attC6attC intra-

molecular recombination reaction, where deletion of the EHBs

completely prevents recombination. Interestingly, in previous work

we found that annealing of the EHBs also decreases the bs integration

frequency to a greater extent than EHBs deletion (VCRGTT mutant

in [31]). We also isolated an IntI1 mutant, D161G, that has a higher

integration activity at the attI site with both the EHBs annealed and

the EHBs deleted sites. This mutation is located in a loop which is

very important for inter-subunit protein/protein interactions and our

data suggested that the D161G mutation, which should allow more

flexibility for synaptic complex assembly, compensates for the rigidity

brought by the full annealing of the L9/L0 box in these sites [31].

The UCS bulge orientation and its shape play an

important role for the recombination efficiency. Not

surprisingly, the spacer regions of the partner sites, which are

not conserved among the various attC sites (apart for the G located

just downstream of the AAC of the R9 box, G122 in Figure 5) or

the different attI sites, do not intervene in the establishment of

strand selectivity. Substitution of the conserved G122 had little

effect when tested in the attI6attC reaction, and the reason for its

conservation remains obscure. However, the orientation and bulge

shape of the UCS influence the recombination efficiency. Indeed,

we noticed a significant decrease in VCR2/1 integration at the attI1

site when we inverted the UCS (mut17-VCR) and when we

rendered it fully annealed in the ss structure (mut21-VCR),

respectively. In our previous study [31] we selected an IntI1

mutant, P109L, which recombined the UCS-inverted VCR site

with only a 10-fold and 5-fold decrease compared to the WT site

and the fully annealed UCS VCR site, respectively. Again, this

mutation, located in the linker between the N-terminal domain

and the catalytic domain, is predicted to give more flexibility to the

synaptic complex assembly.

The UCS bulge is essential for the recombination reaction in

the absence of the EHBs. Indeed, with our suicide conjugation

assay, when all EHBs were deleted and the UCS was mutated to

make it fully paired (mut20-VCR), the ds-attI16ss-attC recombi-

nation process was drastically affected for both strands, but the

DEHB depolarization effect remained (Figure 5). In the same

DEHB context, inversion of the UCS (mut19-VCR) led to an

inversion of polarity in the recombination site. These results

suggest that in absence of the extra-helical G16, T20 and T24, the

UCS of the VCR2/1 site can still impose an attC strand selectivity

in the attI16attC recombination reaction.

The VCR2/1 large VTS is not involved in strand

selectivity. The VTS is the most variable part among the

different attC sites. We did not observe any effect on the location of

the recombination point and very little variation in the

recombination frequency when the VTS was deleted (mut22-

VCR and mut23-VCR, Figure 5). Sundström and colleagues had

observed that a GAA substitution by TTC in the attCaadA1-bs VTS

severely decreased the IntI1 binding in vitro [29]. Our in vivo results

on the VCR site are clearly different and suggest that this

discrepancy may reflect a feature specific of attCaadA1.

Control of the recombination
Specific recognition of the attC bottom strand is the first

challenge for the attI-ds6attC-bs and attC-bs6attC-bs recombina-

tion processes. The second issue in these processes is targeting the

R9 box for the strand exchange. In the integron reaction the

recombination catalytically involves only two of the four integrase

monomers forming the synaptic complex, as there is no second

strand exchange. The crystallographic structure of the V. cholerae

integrase attC-bs synaptic complex reveals the in cis IntI binding to

the T24 EHB, and the consequent disorganization of the catalytic

site, as the main factor for halting the reaction after the first strand

exchange [25]. In the attI-ds6attC-bs reaction, the first strand

exchange must occur in the R boxes of both attC-bs and attI-bs to

maintain the integrity of both sites after the recombination event.

How is the recombination point targeted? The attI site has no

characteristic EHB to specifically differentiate its R box from its L

box. Moreover, no accessory factors seem to be required for the

recognition and the recombination of the attC site. Therefore, an

active site exclusion is required.

This polarity is likely driven by several factors. The first is likely

the fact that the L box found in different characterized attI sites is

never identical to the GTT (ts)/AAC (bs) R box consensus. In

particular, the G/C is never found, preventing the exchange. The

second factor is presumably the extra-helical T24 binding which

disorganizes the catalytic site by pulling the catalytic tyrosine

farther from the phosphate chain in the two IntI monomers bound

to this EHB in cis [25]. However, its presence is neither essential

for the attC6attC deletion reaction, with only a 10- fold decrease

[25], nor for the attI6attC integrative process, as we found it to

occur at the right place with a wt recombination efficiency (data

not shown).

Here, we provide evidence suggesting that a third factor, the

attC-bs UCS, could be partly responsible for the active site

exclusion by directing the initial bending of the site. It is known

that site bending is essential to control the outcome of

recombination in canonical site-specific recombination model

[16]. Here we found that UCS and EHBs co-inversion are

necessary to obtain full exchange of strand selectivity (mut17-VCR

and mut18-VCR). Furthermore, when the attC site is devoid of its

EHBs, our results show that it is sufficient to maintain a bs polarity

over the ts.

The UCS bulge shape is thought to increase the flexibility of the

core recombination site [25], and its asymmetric nucleotidic

composition – A rich in the R0-L0 arm and GC rich in the R9-L9

arm – seem to influence the initial bending orientation of the

VCR2/1 site. We previously selected an IntI1 mutant (P109L, [31])

that recombined the UCS inversion mutant (mut13-VCR) at a

rate almost equivalent to that of IntI1 on the wt VCR. This

mutation is located in the non-structured region linking the N-

terminal domain to the catalytic C-terminal domain, in the C-

shaped 3D structure. Several properties of the P109L mutant

suggest that this mutation affects the flexibility of the integrase and

allows for compensation of the structural change of the UCS bulge

of the mutant site [31].

The UCS bulge shape could also prevent strand exchange

reversal. An earlier study of the Flp-frt system showed that the

presence of mismatches adjacent to the recombination point can

favor cleavage over religation of the substrate [34]. This property

can be essential for the success of the first strand exchange in the

unusual integron single-stranded recombination process where this

exchange is carried out similarly to those of other Y-recombinases

but resulting in a pseudo Holliday junction. Holliday junction

formation in absence of homology in the spacer has previously

been demonstrated using a synthetic l att-site [35]. Nevertheless,

the heterologies present in the spacer segments seem to interfere

with the isomerization step, and therefore a rapid reversal of the

strand exchange is observed. The existence of a UCS could
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restrain the return to the initial substrate before the resolution of

the pseudo Holliday junction by the host. The decrease in the bs

recombination frequency in the VCR2/1 UCS pairing (mut21-

VCR) could thus at least partly reflect the importance of this

reverse effect. However, it is difficult to separate this from the

probable effect of UCS annealing on the bending of the site. More

work will be necessary to clarify this point.

In conclusion, our study shows that two of the three structural

features (EHB and UCS) shared by all attC sites play key roles for

the integron recombination reaction. The first and absolutely

conserved EHB, G16 in VCR2/1, is essential for strand selectivity

and therefore for the expression of the genes carried in the

cassettes. The unpairing of the UCS and its asymmetry are

essential for proper synaptic assembly, and certainly for ensuring

the success of the consecutive steps of the single strand

recombination process. We did not see any significant effect of

the large VCR VTS in our conjugative assay, where the attC site is

delivered as single strand substrate for recombination. But, we

cannot exclude the possibility that the VTS play a major role in

the attC folding in replicative conditions, and this is currently

under investigation. On the other hand, more extensive work will

be performed on other structurally different attC sites to determine

if the functions assigned to the different structural features of the

VCR sites, can be extended to others attC sites.

Finally, these results establish that the folded single strand

structure of the attC site is important for integron recombination

and confirms the originality of this mechanism for gene capture

and dispersal.

Materials and Methods

Bacterial strains, plasmids, and media
Bacterial strains used in this study are DH5a (Laboratory

collection), P1, b2163 [36], UB5201 [37] and UB5201-Pi [30].

Plasmids are described in Table 1. Escherichia coli strains were

grown in Luria-Bertani (LB) or, when specified, in Muller-Hinton

(MH) broth at 37uC. Antibiotics were used at the following

concentrations: ampicillin (Ap), 100 mg/ml; chloramphenicol

(Cm), 25 mg/ml; kanamycin (Km), 25 mg/ml; nalidixic acid

(Nal), 30 mg/ml. Thymidine (Thy) and diaminopimelic acid

(DAP) were supplemented when necessary to a final concentration

of 0.3 mM. Isopropyl-b-D-thiogalactopyranoside (IPTG) was

added at 0.8 mM final concentration. Chemicals were from

Sigma.

pSW-attC construction procedure
VCR mutant sites were constructed by annealing of two

complementary partially overlapping primers followed by a filling

in step using the Taq DNA polymerase (Promega) according to the

manufacturer9s instructions. Primers were obtained from Sigma-

Proligo (France) and are listed in the Table S1. The conditions

used for the annealing - filling procedure were as follows: 94uC for

5 min, followed by 30 cycles of 60uC for 30 sec, 72uC for 30 sec

and 94uC for 30 sec. After amplification, a first cloning step was

carried out using the TOPO TA Cloning kit (Invitrogen). The

sequence of each VCR mutant sites was verified using an ABI

BigDye Terminator v.3.1 sequencing kit and an ABI Prism 3100

Capillary Genetic Analyzer (Applied Biosystem) before being

transferred, by EcoRI/BamHI or MfeI/BamHI digestion (depend-

ing on the restriction sites present in each primer), into the

pSW23T [36] and pSW23TISS [30] plasmids linearized by EcoRI/

BamHI digestion. P1, a [Pir+] DH5a derivative that requires Thy

to grow in MH medium, was used as a cloning strain.

Suicide conjugation assays
The in vivo integration assay. This conjugation assay was

based on that of Biskri et al. [32] and was previously implemented

in Bouvier et al. [30]. In this assay, conjugation is used to deliver

an attC recombination site in ss form into a recipient cell

expressing the IntI1 integrase and carrying the attI1 site. Briefly,

the attC recombination sites provided by conjugation are carried

on a suicide vector from the R6K based pSW family [36] that is

known to use the Pir protein to initiate its own replication. This

plasmid also contains an RP4 origin of transfer (oriTRP4). Two

pSW derivatives, pSW23T and pSW23TISS, allow the insertion of

the tested attC sites in one orientation or the other compared to the

oriTRP4, and transfer of respectively either the attC-bs or the attC-ts.

The donor strain b2163 carries an RP4 integrated in its

chromosome, requires DAP to grow in rich medium and

sustains pSW replication through the expression of a

chromosomally integrated pir gene. The recipient strain

UB5201, which contains the pTRC99A::intI1 [ApR] and the

pSU38-attI1 [KmR], is devoid of a pir gene and therefore cannot

sustain replication of the suicide vector. The only way for the pSW

vector to be maintained in the recipient cell is to form a co-

integrate by attC6attI recombination. The recombination activity

is calculated as the ratio of transconjugants expressing the pSW

marker [CmR] to the total number of recipient clones [ApR KmR].

attC6attI co-integrate confirmation was confirmed and

recombination point localization were performed as described

below. Each recombination value represents a mean of 3

independent experiments. Standard deviations were within the

same range that of those obtained with the same assay in our

former studies [30,31].

The in vivo deletion assay. This conjugation assay is based

on the suicide conjugation assay previously described. In this

assay, a synthetic cassette (attCaadA7-lacIq-VCR2) carried by a pSW

suicide vector is transferred by conjugation to a recipient strain

that expresses the IntI1 integrase. The synthetic cassette is inserted

between a Ptac promoter and a promoter-less pir116* gene [36] that

encodes a functional P protein ([Ptac]-attCaadA7-lacIq-VCR2-

pir116*). The pSW23T and pSW23TISS derivatives allow the

transfer of either strand of the [Ptac]-attCaadA7-lacIq-VCR2-pir116*

extended cassette. The donor and recipient strains are those used

for the previously described integration assay. In this assay, the

recipient strain UB5201 only contains the pTRC99A::intI1 [ApR].

In the native [Ptac]-attCaadA7-lacIq-VCR2-pir116* configuration, the

P protein cannot be expressed and the pSW vector cannot be

maintained in the recipient strain. However, if the cassette is

deleted through an attCaadA76VCR2 recombination event

catalyzed by IntI1, the pir116* gene becomes expressed from the

Ptac promoter, and the produced P protein is able to sustain pSW

replication in the recipient strain, which can be selected based on

the pSW23 CmR marker (Figure 6). The deletion activity is

calculated as the ratio of transconjugants expressing the pSW

marker [CmR] to the total number of recipient clones [ApR].

attCaadA76VCR2 recombination was confirmed by PCR using the

Sw23begin and Sw23end primers (Table S1). The recombination

point was precisely determined by sequencing using the same

primers.

Conjugation procedure
Conjugations were performed overnight on filter as previously

described [30].

Measure of co-integrate formation and recombination

point localization. attC6attI co-integrate formation was

confirmed by PCR using the GoTaq Flexi DNA polymerase

(Promega), according to the manufacturer9s instructions, and the
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Table 1. Plasmids used in this study.

Plasmid number Plasmid description Relevant properties and construction

p929 pSU38D::attI1 orip15A [KmR], [32]

p1394 pTRC99A::intI1 oriColE1, [ApR], [4]

p970 pSW23T oriVR6Kc, oriTRP4;[CmR], [36]

p2637 pSW23TISS pSW23T::oriTRP4 with EcoRI and BamHI restriction site inversed; oriVR6Kc

[CmR] [30]

p1880 pSW23T::VCR2/1 (BOTi) [32]

p2656 pSW23T::VCR2/1 (TOPii) [32]

p3615 pSW23T::attCereA2 (BOTi) Annealing of wt-ereA2-rev and -fwd and EcoRI – BamHI cloning into
pSW23T

p4392 pSW23T::attCereA2 (TOPii) Annealing of wt-ereA2-rev and -fwd and EcoRI – BamHI cloning into
pSW23TISS

p3616 pSW23T::attCoxa2 (BOTi) Annealing of wt-oxa2-rev and -fwd and EcoRI – BamHI cloning into pSW23T

p4390 pSW23T::attCoxa2 (TOPii) Annealing of wt-oxa2-rev and -fwd and EcoRI – BamHI cloning into
pSW23TISS

P1177 pSB118::pir116* [36]

p4699 pTRC::pir116* EcoRI/BamHI fragment amplified in a sequential manner [3-steps] from
p1177 with pfu DNA polymerase and with the pirA1/pirA2, pirB1/pirB2,
pirC1/pirC2 couple of primers in pTRC99A

p1187 pSU38::attCaadA7-catT4-VCR2 [31]

p4700 pSU38::attCaadA7-VCR2 Deletion of the catT4 gene of the p1187 by inverse PCR with 1187-DCat-1
and 1187-DCat-2 primers. Circularisation of the PCR product by EcoRV
digestion, following by ligation.

p4701 pSU38::attCaadA7-VCR2-pir116* SphI/HindIII PCR fragment from p4699 in the p4700 digested by SphI/
HindIII.

p4702 pSU38::attCaadA7-lacIq-VCR2-pir116 KpnI/XbaI fragment amplified from pTRC99A with the lacIq-1 and lacIq-2
primers in p4700.

p4703 pSW23T::[Ptac]-1 MfeI/BamHI PCR fragment amplified from pTX1k [39] with pTAC(pTX1)-1
and pTAC(pTX1)-2 primers in pSW23T.

p4704 pSW23T::[Ptac]-2 MfeI/BamHI PCR fragment amplified from pTX1k [39] with pTAC(pTX1)-1
and pTAC(pTX1)-2 primers in pSW23TISS

p4746 pSW23TDBamHI::[Ptac]-1 SacI fragment from the p4703 religated on itself

p4747 pSW23TDBamHI::[Ptac]-2 SacI fragment from the p4704 religated on itself

p4781 pBBR-MCS4::attCaadA7-lacIq-VCR2-pir116* EcoRI/HindIII fragment from p4702 in pBBR-MCS4 digested by EcoRI/HindIII

p6944 pSW23T::[Ptac]-attCaadA7-lacIq-VCR2-pir116* (BOTi) EcoRI/SalI fragment from p4781 in p4747 digested by EcoRI/SalI

p4742 pSW23T::[Ptac]-attCaadA7-lacIq-VCR2-pir116* (TOPii) EcoRI/SalI fragment from p4781 in p4746 digested by EcoRI/SalI

p6945 pSW23T::[Ptac]-attCaadA7-lacIq-VCR2DEHB-pir116* (mut27) Mutagenesis by PCR on the p6944 with the VCR(DEHB) and SDM-VCR-DEHB
primers

p6946 pSW23T::[Ptac]-attCaadA7DEHB-lacIq-VCR2-pir116* (mut26) EcoRI/BamHI fragment obtained by annealing between the Ad7-DEHB-1
and Ad7-DEHB-2 primers filling with the Taq polymerase, digestion and
cloning in p6944

p6947 pSW23T::[Ptac]-attCaadA7DEHB-lacIq-VCR2DEHB-pir116* (mut28) EcoRI/BamHI fragment from p6946 in p6945 digested by EcoRI/BamHI

p6948 pSW23T::[Ptac]-attCaadA7-lacIq-VCR2[G16RC]-pir116* (mut31) Site-directed mutagenesis by PCR on the p6944 with the VCR(G16RC) and
SDM-VCR primers

p6949 pSW23T::[Ptac]-attCaadA7DEHB-lacIq-VCR2[G16RC]-pir116*
(mut34)

EcoRI/BamHI fragment from p6946 in p6948 digested by EcoRI/BamHI

p6950 pSW23T::[Ptac]-attCaadA7-lacIq-VCR2[G16RT]-pir116* (mut29) Site-directed mutagenesis by PCR on the p6944 with the VCR(G16RT) and
SDM-VCR primers

p6951 pSW23T::[Ptac]-attCaadA7DEHB-lacIq-VCR2[G16RT]-pir116*
(mut32)

EcoRI/BamHI fragment from p6946 in p6950 digested by EcoRI/BamHI

p6952 pSW23T::[Ptac]-attCaadA7-lacIq-VCR2[G16RA]-pir116* (mut30) Site-directed mutagenesis by PCR on the p6944 with the VCR(G16RA) and
SDM-VCR primers

p6953 pSW23T::[Ptac]-attCaadA7DEHB-lacIq-VCR2[G16RA]-pir116*
(mut33)

EcoRI/BamHI fragment from p6946 in p6952 digested by EcoRI/BamHI

iBOT: Bottom strand of the attC site transferred by conjugation.
iiTOP: Top strand of the attC site transferred by conjugation.
doi:10.1371/journal.pgen.1000632.t001
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MRV, MFD, Sw23begin and Sw23end primers (Table S1) on 8

recombinant clones randomly chosen in each mating experiments,

giving a total of 24 clones sequenced for each tested strand of each

mutant.

These primer sets allow discrimination between all possible

recombination events. Indeed, when the VCR-bs is transferred, if

it is recombined in its R9 box both the MRV/Sw23end or MFD/

Sw23begin pairs of primers would amplify the co-integrate

junctions. If, on the contrary, it is recombined in its R0 box then

both the MRV/Sw23begin or MFD/Sw23end pairs of primers

would amplify the co-integrate junctions (Figure 4). Conversely,

when the attC-ts is transferred, if it is recombined in its R0 box both

the MRV/Sw23end or MFD/Sw23begin pairs of primers would

amplify the co-integrate junctions. If, on the contrary, it is

recombined in its R9 box, either the MRV/Sw23begin or MFD/

Sw23end pairs of primers would amplify the co-integrate junctions

(Figure 4). In addition, the co-integrate junctions were sequenced

using the Sw23begin and Sw23end primers.

Supporting Information

Figure S1 Sequence alignment of the top strand of several

natural attC sites. The R9, L9, L9, and R9 boxes are shown.

Found at: doi:10.1371/journal.pgen.1000632.s001 (0.06 MB PDF)

Table S1 Oligonucleotides used in this study

Found at: doi:10.1371/journal.pgen.1000632.s002 (0.22 MB

DOC)
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