8 research outputs found

    A 1,000-year-old antimicrobial remedy with anti-Staphylococcal activity

    Get PDF
    Plant-derived compounds and other natural substances are a rich potential source of compounds that kill or attenuate pathogens that are resistant to current antibiotics. Medieval so- cieties used a range of these natural substances to treat conditions clearly recognizable to the modern eye as microbial infections, and there has been much debate over the likely efficacy of these treatments. Our interdisciplinary team, comprising researchers from both sciences and hu- manities, identified and reconstructed a potential remedy for Staphylococcus aureus infection from a 10th Century Anglo-Saxon Leechbook. The remedy repeatedly killed established S. aure- us biofilms in an in vitro model of soft tissue infection and killed methicillin-resistance S. aureus (MRSA) in a mouse chronic wound model. While the remedy contained several ingredients that are individually known to have some antibacterial activity, full efficacy required the combined action of several ingredients, highlighting the scholarship of pre-modern doctors and the poten- tial of ancient texts as a source of new antimicrobial agents

    The safety profile of Bald’s eyesalve for the treatment of bacterial infections

    Get PDF
    Abstract: The rise in antimicrobial resistance has prompted the development of alternatives to combat bacterial infections. Bald’s eyesalve, a remedy used in the Early Medieval period, has previously been shown to have efficacy against Staphylococcus aureus in in vitro and in vivo models of chronic wounds. However, the safety profile of Bald’s eyesalve has not yet been demonstrated, and this is vital before testing in humans. Here, we determined the safety potential of Bald’s eyesalve using in vitro, ex vivo, and in vivo models representative of skin or eye infections. We also confirmed that Bald’s eyesalve is active against an important eye pathogen, Neisseria gonorrhoeae. Low levels of cytotoxicity were observed in eyesalve-treated cell lines representative of skin and immune cells. Results from a bovine corneal opacity and permeability test demonstrated slight irritation to the cornea that resolved within 10 min. The slug mucosal irritation assay revealed that a low level of mucus was secreted by slugs indicating moderate mucosal irritation. We obtained promising results from mouse wound closure experiments; no visible signs of irritation or inflammation were observed. Our results suggest that Bald’s eyesalve could be tested further on human volunteers to assess safety for topical application against bacterial infections

    The safety of a medieval remedy for the treatment of diabetic foot infections

    No full text
    The rise in antimicrobial resistance has prompted the use of alternatives such as plant derived compounds. Previous research from the lab showed that an ancient remedy, Bald’s eyesalve used in the Anglo-Saxon period had efficacy against Staphylococcus aureus grown in an in vitro model of soft tissue infections (Harrison et al., 2015). Furthermore, this remedy also had efficacy against methicillin-resistant S. aureus (MRSA) in an in vivo mouse model (Harrison et al., 2015). The current research focussed on determining the safety of the ancient remedy in vitro, ex vivo, and in vivo. To do this, the ancient remedy was prepared, mixed together and kept in the fridge for 9 days as specified in the recipe. First, it was tested against a range of Gram-negative and positive wound pathogens in planktonic cultures and biofilms. Next, the safety of the remedy was determined using a range of models: cell lines, bovine corneal opacity permeability test, slug mucosal irritation assay and mice models. Low levels of cytotoxicity was observed in eyesalve treated cell lines representative of skin and immune cells. The results from the BCOP test demonstrated slight irritation to the cornea that resolved within 15 mins and the level of mucus secreted in the slugs were similar to that in the saline control indicating no mucosal irritation. Furthermore, we obtained promising results from the mice wound closure experiments as no visible signs of irritation or inflammation was observed. This research has the potential to transform the management of diabetic foot infections

    NemaLife chip: a micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans

    No full text
    © 2020, The Author(s). In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (daf-2, age-1, eat-2, and daf-16) and animals subjected to RNAi knockdown of age-related genes (age-1 and daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans

    Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species

    No full text
    Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence towards a commensal state when exposed to commensal Corynebacterium species

    Effect of Bald's eyesalve and its constituent ingredients on S. aureus in vitro and in vivo.

    No full text
    Data presented in Figs 2-5 and Fig S1 of Harrison et al, mBio 2015. Each worksheet contains a) raw data and b) annotated R code for a single figure
    corecore