4,395 research outputs found
The dressed nonrelativistic electron in a magnetic field
We consider a nonrelativistic electron interacting with a classical magnetic
field pointing along the -axis and with a quantized electromagnetic
field. When the interaction between the electron and photons is turned off, the
electronic system is assumed to have a ground state of finite multiplicity.
Because of the translation invariance along the -axis, we consider the
reduced Hamiltonian associated with the total momentum along the -axis
and, after introducing an ultraviolet cutoff and an infrared regularization, we
prove that the reduced Hamiltonian has a ground state if the coupling constant
and the total momentum along the -axis are sufficiently small. Finally
we determine the absolutely continuous spectrum of the reduced Hamiltonian.Comment: typos correction
A non-grey analytical model for irradiated atmospheres. II: Analytical vs. numerical solutions
The recent discovery and characterization of the diversity of the atmospheres
of exoplanets and brown dwarfs calls for the development of fast and accurate
analytical models. We quantify the accuracy of the analytical solution derived
in paper I for an irradiated, non-grey atmosphere by comparing it to a
state-of-the-art radiative transfer model. Then, using a grid of numerical
models, we calibrate the different coefficients of our analytical model for
irradiated solar-composition atmospheres of giant exoplanets and brown dwarfs.
We show that the so-called Eddington approximation used to solve the angular
dependency of the radiation field leads to relative errors of up to 5% on the
temperature profile. We show that for realistic non-grey planetary atmospheres,
the presence of a convective zone that extends to optical depths smaller than
unity can lead to changes in the radiative temperature profile on the order of
20% or more. When the convective zone is located at deeper levels (such as for
strongly irradiated hot Jupiters), its effect on the radiative atmosphere is
smaller. We show that the temperature inversion induced by a strong absorber in
the optical, such as TiO or VO is mainly due to non-grey thermal effects
reducing the ability of the upper atmosphere to cool down rather than an
enhanced absorption of the stellar light as previously thought.
Finally, we provide a functional form for the coefficients of our analytical
model for solar-composition giant exoplanets and brown dwarfs. This leads to
fully analytical pressure-temperature profiles for irradiated atmospheres with
a relative accuracy better than 10% for gravities between 2.5m/s^2 and 250
m/s^2 and effective temperatures between 100 K and 3000 K. This is a great
improvement over the commonly used Eddington boundary condition.Comment: Accepted in A&A, models are available at
http://www.oca.eu/parmentier/nongrey or in CD
On the Radii of Close-in Giant Planets
The recent discovery that the close-in extrasolar giant planet, HD209458b,
transits its star has provided a first-of-its-kind measurement of the planet's
radius and mass. In addition, there is a provocative detection of the light
reflected off of the giant planet, Boo b. Including the effects of
stellar irradiation, we estimate the general behavior of radius/age
trajectories for such planets and interpret the large measured radii of
HD209458b and Boo b in that context. We find that HD209458b must be a
hydrogen-rich gas giant. Furthermore, the large radius of close-in gas giant is
not due to the thermal expansion of its atmosphere, but to the high residual
entropy that remains throughout its bulk by dint of its early proximity to a
luminous primary. The large stellar flux does not inflate the planet, but
retards its otherwise inexorable contraction from a more extended configuration
at birth. This implies either that such a planet was formed near its current
orbital distance or that it migrated in from larger distances (0.5 A.U.),
no later than a few times years of birth.Comment: aasms4 LaTeX, 1 figure, accepted to Ap.J. Letter
Toward a homogeneous set of transiting planet parameters
With 40 or more transiting exoplanets now known, the time is ripe to seek
patterns and correlations among their observed properties, which may give
important insights into planet formation, structure, and evolution. This task
is made difficult by the widely different methodologies that have been applied
to measure their properties in individual cases. Furthermore, in many systems
our knowledge of the planet properties is limited by the knowledge of the
properties of the parent stars. To address these difficulties we have
undertaken the first comprehensive analysis of the data for 23 transiting
planets using a uniform methodology. We revisit several of the recently
proposed correlations, and find new ones involving the metallicity of the
parent stars.Comment: 4 pages including figures. To appear in Proceedings of IAU Symposium
253, "Transiting Planets", May 2008, Cambridge, M
Inverse scattering at fixed energy for layered media
AbstractIn this article we show that exponentially decreasing perturbations of the sound speed in a layered medium can be recovered from the scattering amplitude at fixed energy. We consider the unperturbed equation utt = c02(xn)δu in ℝ×ℝ, where n ≥ 3. The unperturbed sound speed, c0(xn), is assumed to be bounded, strictly positive, and constant outside a bounded interval on the real axis. The perturbed sound speed, c(x), satisfies ¦c.(x) - co(xn)¦ < C exp(−δ¦x¦) for some δ > 0. Our work is related to the recent results of H. Isozaki (J. Diff. Eq. 138) on the case where c0 takes the constant values c+ and c− on the positive and negative half-lines, and R. Weder on the case c0 = c+ for xn > h, c0 = ch, for 0 < xn, < h, and c0 = c− for xn < 0 (IIMAS-UNAM Preprint 70, November, 1997)
- …