13,009 research outputs found

    Keratin 6a marks mammary bipotential progenitor cells that can give rise to a unique tumor model resembling human normal-like breast cancer.

    Get PDF
    Progenitor cells are considered an important cell of origin of human malignancies. However, there has not been any single gene that can define mammary bipotential progenitor cells, and as such it has not been possible to use genetic methods to introduce oncogenic alterations into these cells in vivo to study tumorigenesis from them. Keratin 6a is expressed in a subset of mammary luminal epithelial cells and body cells of terminal end buds. By generating transgenic mice using the Keratin 6a (K6a) gene promoter to express tumor virus A (tva), which encodes the receptor for avian leukosis virus subgroup A (ALV/A), we provide direct evidence that K6a(+) cells are bipotential progenitor cells, and the first demonstration of a non-basal location for some biopotential progenitor cells. These K6a(+) cells were readily induced to form mammary tumors by intraductal injection of RCAS (an ALV/A-derived vector) carrying the gene encoding the polyoma middle T antigen. Tumors in this K6a-tva line were papillary and resembled the normal breast-like subtype of human breast cancer. This is the first model of this subtype of human tumors and thus may be useful for preclinical testing of targeted therapy for patients with normal-like breast cancer. These observations also provide direct in vivo evidence for the hypothesis that the cell of origin affects mammary tumor phenotypes

    Fluoxetine: a case history of its discovery and preclinical development

    Get PDF
    Introduction: Depression is a multifactorial mood disorder with a high prevalence worldwide. Until now, treatments for depression have focused on the inhibition of monoaminergic reuptake sites, which augment the bioavailability of monoamines in the CNS. Advances in drug discovery have widened the therapeutic options with the synthesis of so-called selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine. Areas covered: The aim of this case history is to describe and discuss the pharmacokinetic and pharmacodynamic profiles of fluoxetine, including its acute effects and the adaptive changes induced after long-term treatment. Furthermore, the authors review the effect of fluoxetine on neuroplasticity and adult neurogenesis. In addition, the article summarises the preclinical behavioural data available on fluoxetine’s effects on depressive-like behaviour, anxiety and cognition as well as its effects on other diseases. Finally, the article describes the seminal studies validating the antidepressant effects of fluoxetine. Expert opinion: Fluoxetine is the first selective SSRI that has a recognised clinical efficacy and safety profile. Since its discovery, other molecules that mimic its mechanism of action have been developed, commencing a new age in the treatment of depression. Fluoxetine has also demonstrated utility in the treatment of other disorders for which its prescription has now been approved

    Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    Get PDF
    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog

    Development of Shuttle Vectors for Transformation of Diverse Rickettsia Species

    Get PDF
    Plasmids have been identified in most species of Rickettsia examined, with some species maintaining multiple different plasmids. Three distinct plasmids were demonstrated in Rickettsia amblyommii AaR/SC by Southern analysis using plasmid specific probes. Copy numbers of pRAM18, pRAM23 and pRAM32 per chromosome in AaR/SC were estimated by real-time PCR to be 2.0, 1.9 and 1.3 respectively. Cloning and sequencing of R. amblyommii AaR/SC plasmids provided an opportunity to develop shuttle vectors for transformation of rickettsiae. A selection cassette encoding rifampin resistance and a fluorescent marker was inserted into pRAM18 yielding a 27.6 kbp recombinant plasmid, pRAM18/Rif/GFPuv. Electroporation of Rickettsia parkeri and Rickettsia bellii with pRAM18/Rif/GFPuv yielded GFPuv-expressing rickettsiae within 2 weeks. Smaller vectors, pRAM18dRG, pRAM18dRGA and pRAM32dRGA each bearing the same selection cassette, were made by moving the parA and dnaA-like genes from pRAM18 or pRAM32 into a vector backbone. R. bellii maintained the highest numbers of pRAM18dRGA (13.3 – 28.1 copies), and R. parkeri, Rickettsia monacensis and Rickettsia montanensis contained 9.9, 5.5 and 7.5 copies respectively. The same species transformed with pRAM32dRGA maintained 2.6, 2.5, 3.2 and 3.6 copies. pRM, the plasmid native to R. monacensis, was still present in shuttle vector transformed R. monacensis at a level similar to that found in wild type R. monacensis after 15 subcultures. Stable transformation of diverse rickettsiae was achieved with a shuttle vector system based on R. amblyommii plasmids pRAM18 and pRAM32, providing a new research tool that will greatly facilitate genetic and biological studies of rickettsiae

    Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA

    Get PDF
    In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-ÎłS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action

    Protective effects of MCT diet in a mouse model of Dravet syndrome

    Get PDF
    Objective: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy with early childhood onset. Patients with DS do not respond well to antiepileptic drugs and have only a few treatment options available. Here, we evaluated the effect of medium chain triglyceride (MCT) diet therapy in a mouse model of DS. // Methods: Scn1aR1407X/+ DS mice were given diets supplemented with MCTs with varying ratios of decanoic (C10) and octanoic (C8) acid or a control diet for 4 weeks. Video monitoring was performed to evaluate spontaneous convulsive seizure frequency. Susceptibility to hyperthermia-induced seizures was also examined. Medium chain fatty acids, and mitochondrial and antioxidant markers were assessed in brain homogenate. // Results: Dietary intervention with MCTs significantly prolonged survival and reduced convulsive seizure frequency during the critical period of highest seizure occurrence in the Scn1aR1407X/+ DS mice. Moreover, MCT diet therapy showed protective effects against hyperthermia-induced seizures. We demonstrated that coadministration of C10/C8 was effective at reducing both seizures and mortality, whereas C10 alone only reduced mortality, suggesting that the ratio of C10 to C8 in the MCT is an important factor for efficacy. When C10 and C8 are supplemented at an 80:20 ratio in the diet, C10 accumulates in the brain in high enough concentrations to enhance brain energy metabolism by both stimulating mitochondrial enrichment and increasing its antioxidant status. // Significance: The results from this study indicate that MCT diet therapy may provide therapeutic benefits in DS. Future clinical studies would elucidate whether these positive effects are mirrored in human patients

    Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme

    Get PDF
    This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reefal environment dominated by warm water forms, such as Alveolina, Assilina and Nummulites (TP3-7); (v) a depositional stage showing a slight deepening of the reef, with forereef assemblages, lasting until the end of theYpresian (TP8); (vi) a final, early Lutetian depositional stage characterised by the complete disappearance of the larger benthic foraminifera (LBF) and their reefal environment, which was replaced by PF assemblages with intense reworking of pelagic facies triggered by the tectonics of the India-Asia collision (TP9). During the course of this study two unnamed species have been identified and described, Lepidorbitoides sp. A and Discocyclina sp. A, from the Xigaze forearc basin. The high resolution depositional and biostratigraphic scheme defined here for the southern Himalayan region gives greater insight into the general evolution of this globally important tectonic region.We have confirmed earlier observations that many LBF forms appear about 1Ma later in the eastern part of Tethys than they do in the west, reflecting their previously inferred gradual eastern paleogeographic migration. Additionally, this study has allowed us to refine the biostratigraphic ranges of some LBF of the Eastern Tethys, and for the first time to exactly correlate these Eastern Tethyan zones with the Shallow Benthic Zones (SBZs) of the Western Tethys

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure

    Deterministic polarization chaos from a laser diode

    Full text link
    Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure

    Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel

    Get PDF
    Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation
    • …
    corecore