1,258 research outputs found

    Plasma Homeostasis and Cloacal Urine Composition in Crocodylus porosus Caught Along a Salinity Gradient

    Get PDF
    Juveniles of the Estuarine or Saltwater Crocodile, Crocodylus porosus, maintain both osmotic pressure and plasma electrolyte homeostasis along a salinity gradient from fresh water to the sea. In fresh water (FW) the cloacal urine is a clear solution rich in ammonium and bicarbonate and containing small amounts of white precipitated solids with high concentrations of calcium and magnesium. In salt water (SW) the cloacal urine has a much higher proportion of solids, cream rather than white in colour, which are the major route for excretion of potassium in addition to calcium and magnesium. Neither liquid nor solid fractions of the cloacal urine represent a major route for excretion of sodium chloride. The solids are urates and uric acid, and their production probably constitutes an important strategy for water conservation by C. porosus in SW. These data, coupled with natural history observations and the recent identification of lingual salt glands, contribute to the conclusion that C. porosus is able to live and breed in either fresh or salt water and may be as euryhaline as any reptile

    Osmoregulation of the Australian freshwater crocodile, Crocodylus johnstoni, in fresh and saline waters

    Get PDF
    An unusual saltwater population of the "freshwater" crocodilian, Crocodylus johnstoni, was studied in the estuary of the Limmen Bight River in Australia's Northern Territory and compared with populations in permanently freshwater habitats. Crocodiles in the river were found across a large salinity gradient, from fresh water to a salinity of 24 mg.ml-1, more than twice the body fluid concentration. Plasma osmolarity, concentrations of plasma Na+, Cl-, and K+, and exchangeable Na+ pools were all remarkably constant across the salinity spectrum and were not substantially higher or more variable than those in crocodiles from permanently freshwater habitats. Body fluid volumes did not vary; condition factor and hydration status of crocodiles were not correlated with salinity and were not different from those of crocodiles from permanently fresh water. C. johnstoni clearly has considerable powers of osmoregulation in waters of low to medium salinity. Whether this osmoregulatory competence, extends to continuously hyperosmotic environments is not known, but distributional data suggest that C. johnstoni in hyperosmotic conditions may require periodic access to hypoosmotic water. The study demonstrates a physiological capacity for colonisation of at least some estuarine waters by this normally stenohaline freshwater crocodilian

    Cardiovascular Dynamics in Crocodylus porosus Breathing Air and During Voluntary Aerobic Dives

    Get PDF
    Pressure records from the heart and outflow vessels of the heart of Crocodylus porosus resolve previously conflicting results, showing that left aortic filling via the foramen of Panizza may occur during both cardiac diastole and systole. Filling of the left aorta during diastole, identified by the asynchrony and comparative shape of pressure events in the left and right aortae, is reconciled more easily with the anatomy, which suggests that the foramen would be occluded by opening of the pocket valves at the base of the right aorta during systole. Filling during systole, indicated when pressure traces in the left and right aortae could be superimposed, was associated with lower systemic pressures, which may occur at the end of a voluntary aerobic dive or can be induced by lowering water temperature or during a long forced dive. To explain this flexibility, we propose that the foramen of Panizza is of variable calibre. The presence of a 'right-left' shunt, in which increased right ventricular pressure leads to blood being diverted from the lungs and exiting the right ventricle via the left aorta, was found to be a frequent though not obligate correlate of voluntary aerobic dives. This contrasts with the previous concept of the shunt as a correlate of diving bradycardia. The magnitude of the shunt is difficult to assess but is likely to be relatively small. This information has allowed some new insights into the functional significance of the complex anatomy of the crocodilian heart and major blood vessels

    Getting into hot water:sick guppies frequent warmer thermal conditions

    Get PDF
    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate

    Development of the Pulmonary Vein and the Systemic Venous Sinus: An Interactive 3D Overview

    Get PDF
    Knowledge of the normal formation of the heart is crucial for the understanding of cardiac pathologies and congenital malformations. The understanding of early cardiac development, however, is complicated because it is inseparably associated with other developmental processes such as embryonic folding, formation of the coelomic cavity, and vascular development. Because of this, it is necessary to integrate morphological and experimental analyses. Morphological insights, however, are limited by the difficulty in communication of complex 3D-processes. Most controversies, in consequence, result from differences in interpretation, rather than observation. An example of such a continuing debate is the development of the pulmonary vein and the systemic venous sinus, or “sinus venosus”. To facilitate understanding, we present a 3D study of the developing venous pole in the chicken embryo, showing our results in a novel interactive fashion, which permits the reader to form an independent opinion. We clarify how the pulmonary vein separates from a greater vascular plexus within the splanchnic mesoderm. The systemic venous sinus, in contrast, develops at the junction between the splanchnic and somatic mesoderm. We discuss our model with respect to normal formation of the heart, congenital cardiac malformations, and the phylogeny of the venous tributaries

    Directed Assembly of Homopentameric Cholera Toxin B‑Subunit Proteins into Higher-Order Structures Using Coiled-Coil Appendages

    Get PDF
    The self-assembly of proteins into higher order structures is ubiquitous in living systems. It is also an essential process for the bottom-up creation of novel molecular architectures and devices for synthetic biology. However, the complexity of protein-protein interaction surfaces makes it challenging to mimic natural assembly processes in artificial systems. Indeed, many successful computationally designed protein assemblies are pre-screened for ‘designability’, limiting the choice of components. Here, we report a simple and pragmatic strategy to assemble chosen multi-subunit proteins into more complex structures. A coiled-coil domain appended to one face of the pentameric cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular supra-molecular complexes. X-ray crystallography and analysis of a tubular structure has revealed a hierarchical assembly process that displays features reminiscent of the polymorphic assembly of polyomavirus proteins. The approach provides a simple and straightforward method to direct the assembly of protein building blocks which present either termini on a single face of an oligomer. This scaffolding approach can be used to generate bespoke supramolecular assemblies of functional proteins. Additionally, structural resolution of the scaffolded assemblies highlight ‘native-state’ forced protein-protein interfaces, which may prove useful as starting conformations for future computational design

    A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    Full text link
    We describe a search method for fast moving (β>5×103\beta > 5 \times 10^{-3}) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5×1015cm2s1sr11.5 \times 10^{-15} cm^{-2} s^{-1} sr^{-1} in the velocity range 5×103β0.995 \times 10^{-3} \le \beta \le 0.99 and for nucleon decay catalysis cross section smaller than 1mb\sim 1 mb.Comment: 29 pages (12 figures). Accepted by Astroparticle Physic

    Final results of magnetic monopole searches with the MACRO experiment

    Get PDF
    We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles in the penetrating cosmic radiation, for the range 4×105<β<14\times 10^{-5}< \beta < 1. Several searches with all the MACRO sub-detectors (i.e. scintillation counters, limited streamer tubes and nuclear track detectors) were performed, both in stand alone and combined ways. No candidates were detected and a 90% Confidence Level (C.L.) upper limit to the local magnetic monopole flux was set at the level of 1.4×10161.4\times 10^{-16} cm2^{-2} s1^{-1} sr1^{-1}. This result is the first experimental limit obtained in direct searches which is well below the Parker bound in the whole β\beta range in which GUT magnetic monopoles are expected.Comment: 12 pages, Latex, 9 figures and 2 Table

    The incidence of smoking and risk factors for smoking initiation in medical faculty students: cohort study

    Get PDF
    BACKGROUND: Medical education requires detailed investigation because it is a period during which the attitudes and behaviors of physicians develop. The purpose of this study was to calculate the yearly smoking prevalence and incidence rates of medical faculty students and to identify the risk factors for adopting smoking behaviour. METHODS: This is a cohort study in which every student was asked about their smoking habits at the time of first registration to the medical faculty, and was monitored every year. Smoking prevalence, yearly incidence of initiation of smoking and average years of smoking were calculated in analysis. RESULTS: At the time of registration, 21.8% of the students smoked. At the end of six years, males had smoked for an average of 2.6 ± 3.0 years and females for 1.0 ± 1.8 years (p < 0.05). Of the 93 medical students who were not smokers at the time of registration, 30 (32.3%) were smokers at the end of the 6 years of the course. CONCLUSION: The first 3 years of medical education are the most risky period for initiation of smoking. We found that factors such as being male, having a smoking friend in the same environment and having a high trait anxiety score were related to the initiation of smoking. Targeted smoking training should be mandatory for students in the Medical Faculty
    corecore