774 research outputs found
Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results
Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans
<p>Abstract</p> <p>Background</p> <p>Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode <it>Caenorhabditis elegans</it>, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success.</p> <p>Results</p> <p>We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners.</p> <p>Conclusions</p> <p>We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that <it>C. elegans </it>harbors substantial heritable variation for traits contributing to male reproductive success. <it>C. elegans </it>provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.</p
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
Stable Isotope Ratios in Hair and Teeth Reflect Biologic Rhythms
Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals
Recommended from our members
Reconciled climate response estimates from climate models and the energy budget of Earth
Climate risks increase with mean global temperature, so knowledge about the amount of future global warming should better inform risk assessments for policymakers. Expected near-term warming is encapsulated by the transient climate response (TCR), formally defined as the warming following 70 years of 1% per year increases in atmospheric CO2 concentration, by which point atmospheric CO2 has doubled. Studies based on Earth’s historical energy budget have typically estimated lower values of TCR than climate models, suggesting that some models could overestimate future warming. However, energy-budget estimates rely on historical temperature records that are geographically incomplete and blend air temperatures over land and sea ice with water temperatures over open oceans. We show that there is no evidence that climate models overestimate TCR when their output is processed in the same way as the HadCRUT4 observation-based temperature record3, 4. Models suggest that air-temperature warming is 24% greater than observed by HadCRUT4 over 1861–2009 because slower-warming regions are preferentially sampled and water warms less than air5. Correcting for these biases and accounting for wider uncertainties in radiative forcing based on recent evidence, we infer an observation-based best estimate for TCR of 1.66 °C, with a 5–95% range of 1.0–3.3 °C, consistent with the climate models considered in the IPCC 5th Assessment Report
Fractured metallic tracheostomy tube in a child: a case report and review of the literature
<p>Abstract</p> <p>Introduction</p> <p>Tracheostomy is a common airway procedure for life support. The fracture of the tracheostomy tube is a rare complication. We report a case of a 14-year-old boy whose fractured stainless steel tracheostomy tube dislodged into the tracheobronchial tree. We include a literature review and proposed recommendations for tracheostomy care.</p> <p>Case presentation</p> <p>A 14-year-old Thai boy who had a stainless steel tracheostomy tube presented with a complaint of intermittent cough for 2 months. During tracheostomy tube cleaning, his parents found that the inner tube was missing. A chest X-ray revealed a metallic density foreign body in his right main bronchus. He underwent bronchoscopic removal of the inner tracheostomy tube and was discharged without further complications.</p> <p>Conclusion</p> <p>A fractured tracheostomy tube is a rare complication. Appropriate cleaning and scheduled replacement of the tracheostomy tube may prevent this complication.</p
Recommended from our members
‘Is this a time of beautiful chaos?’: reflecting on international feminist legal methods
This article considers how Margaret Jane Radin’s theory of the feminist double bind can bring conceptual clarity to the difficulties feminisms face in engaging with political and legal institutions of global governance. I draw on her theory to reinitiate a conversation on ideal and nonideal theory, in order to answer the call of key proponents in international legal feminism to reevaluate methodologies in critiquing mainstream institutions. By providing an account of how to navigate the double bind, this article brings conceptual clarity to the tension between resistance and compliance that has been argued to lie at the heart of the feminist project in international law. I demonstrate how this theoretical framework can foster greater pluralist perspectives in feminist engagement of ideal theories to temper the deradicalising and conservative risk of navigating feasibility constrained nonideal strategies
The Utility of High-Resolution Melting Analysis of SNP Nucleated PCR Amplicons—An MLST Based Staphylococcus aureus Typing Scheme
High resolution melting (HRM) analysis is gaining prominence as a method for discriminating DNA sequence variants. Its advantage is that it is performed in a real-time PCR device, and the PCR amplification and HRM analysis are closed tube, and effectively single step. We have developed an HRM-based method for Staphylococcus aureus genotyping. Eight single nucleotide polymorphisms (SNPs) were derived from the S. aureus multi-locus sequence typing (MLST) database on the basis of maximized Simpson's Index of Diversity. Only G↔A, G↔T, C↔A, C↔T SNPs were considered for inclusion, to facilitate allele discrimination by HRM. In silico experiments revealed that DNA fragments incorporating the SNPs give much higher resolving power than randomly selected fragments. It was shown that the predicted optimum fragment size for HRM analysis was 200 bp, and that other SNPs within the fragments contribute to the resolving power. Six DNA fragments ranging from 83 bp to 219 bp, incorporating the resolution optimized SNPs were designed. HRM analysis of these fragments using 94 diverse S. aureus isolates of known sequence type or clonal complex (CC) revealed that sequence variants are resolved largely in accordance with G+C content. A combination of experimental results and in silico prediction indicates that HRM analysis resolves S. aureus into 268 “melt types” (MelTs), and provides a Simpson's Index of Diversity of 0.978 with respect to MLST. There is a high concordance between HRM analysis and the MLST defined CCs. We have generated a Microsoft Excel key which facilitates data interpretation and translation between MelT and MLST data. The potential of this approach for genotyping other bacterial pathogens was investigated using a computerized approach to estimate the densities of SNPs with unlinked allelic states. The MLST databases for all species tested contained abundant unlinked SNPs, thus suggesting that high resolving power is not dependent upon large numbers of SNPs
Recommended from our members
An empirical model for probabilistic decadal prediction: global attribution and regional hindcasts
Empirical models, designed to predict surface variables over seasons to decades ahead, provide useful benchmarks for comparison against the performance of dynamical forecast systems; they may also be employable as predictive tools for use by climate services in their own right. A new global empirical decadal prediction system is presented, based on a multiple linear regression approach designed to produce probabilistic output for comparison against dynamical models. A global attribution is performed initially to identify the important forcing and predictor components of the model . Ensemble hindcasts of surface air temperature anomaly fields are then generated, based on the forcings and predictors identified as important, under a series of different prediction ‘modes’ and their performance is evaluated. The modes include a real-time setting, a scenario in which future volcanic forcings are prescribed during the hindcasts, and an approach which exploits knowledge of the forced trend. A two-tier prediction system, which uses knowledge of future sea surface temperatures in the Pacific and Atlantic Oceans, is also tested, but within a perfect knowledge framework. Each mode is designed to identify sources of predictability and uncertainty, as well as investigate different approaches to the design of decadal prediction systems for operational use. It is found that the empirical model shows skill above that of persistence hindcasts for annual means at lead times of up to 10 years ahead in all of the prediction modes investigated. It is suggested that hindcasts which exploit full knowledge of the forced trend due to increasing greenhouse gases throughout the hindcast period can provide more robust estimates of model bias for the calibration of the empirical model in an operational setting. The two-tier system shows potential for improved real-time prediction, given the assumption that skilful predictions of large-scale modes of variability are available. The empirical model framework has been designed with enough flexibility to facilitate further developments, including the prediction of other surface variables and the ability to incorporate additional predictors within the model that are shown to contribute significantly to variability at the local scale. It is also semi-operational in the sense that forecasts have been produced for the coming decade and can be updated when additional data becomes available
- …