310 research outputs found

    The Insoluble Carbonaceous Material of CM Chondrites as Possible Source of Discrete Organics During the Asteroidal Aqueous Phase

    Get PDF
    The larger portion of the organic carbon in carbonaceous chondrites (CC) is present as a complex and heterogeneous macromolecular material that is insoluble in acids and most solvents (IOM). So far, it has been analyzed only as a whole by microscopy (TEM) and spectroscopy (IR, NMR, EPR), which have offered and overview of its chemical nature, bonding, and functional group composition. Chemical or pyrolytic decomposition has also been used in combination with GC-MS to identify individual compounds released by these processes. Their value in the recognition of the original IOM structure resides in the ability to properly interpret the decomposition pathways for any given process. We report here a preliminary study of IOM from the Murray meteorite that combines both the analytical approaches described above, under conditions that would realistically model the IOM hydrothermal exposure in the meteorite parent body. The aim is to document the possible release of water and solvent soluble organics, determine possible changes in NMR spectral features, and ascertain, by extension, the effect of this loss on the frame of the IOM residue. Additional information is included in the original extended abstract

    An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis

    Get PDF
    A systems-level understanding of a small but essential population of cells in development or adulthood (e.g. somatic stem cells) requires accurate quantitative monitoring of genome-wide gene expression, ideally from single cells. We report here a strategy to globally amplify mRNAs from single cells for highly quantitative high-density oligonucleotide microarray analysis that combines a small number of directional PCR cycles with subsequent linear amplification. Using this strategy, both the representation of gene expression profiles and reproducibility between individual experiments are unambiguously improved from the original method, along with high coverage and accuracy. The immediate application of this method to single cells in the undifferentiated inner cell masses of mouse blastocysts at embryonic day (E) 3.5 revealed the presence of two populations of cells, one with primitive endoderm (PE) expression and the other with pluripotent epiblast-like gene expression. The genes expressed differentially between these two populations were well preserved in morphologically differentiated PE and epiblast in the embryos one day later (E4.5), demonstrating that the method successfully detects subtle but essential differences in gene expression at the single-cell level among seemingly homogeneous cell populations. This study provides a strategy to analyze biophysical events in medicine as well as in neural, stem cell and developmental biology, where small numbers of distinctive or diseased cells play critical roles

    Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis

    Get PDF
    1細胞データ解析の精度が飛躍的に向上する前処理法の開発. 京都大学プレスリリース. 2022-08-09.Clearing the mist hiding the genome. 京都大学プレスリリース. 2022-08-09.Single-cell RNA sequencing (scRNA-seq) can determine gene expression in numerous individual cells simultaneously, promoting progress in the biomedical sciences. However, scRNA-seq data are high-dimensional with substantial technical noise, including dropouts. During analysis of scRNA-seq data, such noise engenders a statistical problem known as the curse of dimensionality (COD). Based on high-dimensional statistics, we herein formulate a noise reduction method, RECODE (resolution of the curse of dimensionality), for high-dimensional data with random sampling noise. We show that RECODE consistently resolves COD in relevant scRNA-seq data with unique molecular identifiers. RECODE does not involve dimension reduction and recovers expression values for all genes, including lowly expressed genes, realizing precise delineation of cell fate transitions and identification of rare cells with all gene information. Compared with representative imputation methods, RECODE employs different principles and exhibits superior overall performance in cell-clustering, expression value recovery, and single-cell–level analysis. The RECODE algorithm is parameter-free, data-driven, deterministic, and high-speed, and its applicability can be predicted based on the variance normalization performance. We propose RECODE as a powerful strategy for preprocessing noisy high-dimensional data

    RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2

    Get PDF
    Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. ​BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting ​RAD51 nucleofilament formation at stalled replication forks. ​CDK2 phosphorylates ​BRCA2 (pS3291-​BRCA2) to limit stabilizing contacts with polymerized ​RAD51; however, how replication stress modulates ​CDK2 activity and whether loss of pS3291-​BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase ​LATS1 interacts with ​CDK2 in response to genotoxic stress to constrain pS3291-​BRCA2 and support ​RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that ​LATS1 forms part of an ​ATR-mediated response to replication stress that requires the tumour suppressor ​RASSF1A. Importantly, perturbation of the ​ATR–​RASSF1A–​LATS1 signalling axis leads to genomic defects associated with loss of ​BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers

    E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary Diffuse Gastric Cancer

    Get PDF
    E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC) and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R), of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated). Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo

    The Ligand Binding Domain of GCNF Is Not Required for Repression of Pluripotency Genes in Mouse Fetal Ovarian Germ Cells

    Get PDF
    In mice, successful development and reproduction require that all cells, including germ cells, transition from a pluripotent to a differentiated state. This transition is associated with silencing of the pluripotency genes Oct4 and Nanog. Interestingly, these genes are repressed at different developmental timepoints in germ and somatic cells. Ovarian germ cells maintain their expression until about embryonic day (E) 14.5, whereas somatic cells silence them much earlier, at about E8.0. In both somatic cells and embryonic stem cells, silencing of Oct4 and Nanog requires the nuclear receptor GCNF. However, expression of the Gcnf gene has not been investigated in fetal ovarian germ cells, and whether it is required for silencing Oct4 and Nanog in that context is not known. Here we demonstrate that Gcnf is expressed in fetal ovarian germ cells, peaking at E14.5, when Oct4 and Nanog are silenced. However, conditional ablation of the ligand-binding domain of Gcnf using a ubiquitous, tamoxifen-inducible Cre indicates that Gcnf is not required for the down-regulation of pluripotency genes in fetal ovarian germ cells, nor is it required for initiation of meiosis and oogenesis. These results suggest that the silencing of Oct4 and Nanog in germ cells occurs via a different mechanism from that operating in somatic cells during gastrulation.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (2R01HG00257-20)National Human Genome Research Institute (U.S.) (2R01HG00257-20
    corecore