1,453 research outputs found

    Shedding Light on Diatom Photonics by means of Digital Holography

    Get PDF
    Diatoms are among the dominant phytoplankters in the worl's ocean, and their external silica investments, resembling artificial photonics crystal, are expected to play an active role in light manipulation. Digital holography allowed studying the interaction with light of Coscinodiscus wailesii cell wall reconstructing the light confinement inside the cell cytoplasm, condition that is hardly accessible via standard microscopy. The full characterization of the propagated beam, in terms of quantitative phase and intensity, removed a long-standing ambiguity about the origin of the light. The data were discussed in the light of living cell behavior in response to their environment

    Hyperplastic cholangitis in a naturally Toxoplasma gondii-infected cat.

    Get PDF
    Toxoplasma gondii can cause in cats a multisystemic disease involving the liver, lungs, central nervous system and other organs. The liver generally shows multifocal necrotizing hepatitis with possible panlobular extension, with histological evidence of free tachyzoites and/or cysts containing bradyzoites within necrotic foci. Very rarely, toxoplasmosis is expressed by cholangitis, the latter being much more frequently caused in cats by bacteria of intestinal origin. We report here a case of cholangitis/cholangiohepatitis in a young cat, where cytology of the liver showed multiple maturational stages of protozoa in the cytoplasm of cells of the bile ducts. On the basis of the cytological, histological, ultrastructural and molecular details, the microorganisms were identified as belonging to the species Toxoplasma gondii

    OptEEmAL: Decision-Support Tool for the Design of Energy Retrofitting Projects at District Level

    Get PDF
    Designing energy retrofitting actions poses an elevated number of problems, as the definition of the baseline, selection of indicators to measure performance, modelling, setting objectives, etc. This is time-consuming and it can result in a number of inaccuracies, leading to inadequate decisions. While these problems are present at building level, they are multiplied at district level, where there are complex interactions to analyse, simulate and improve. OptEEmAL proposes a solution as a decision-support tool for the design of energy retrofitting projects at district level. Based on specific input data (IFC(s), CityGML, etc.), the platform will automatically simulate the baseline scenario and launch an optimisation process where a series of Energy Conservation Measures (ECMs) will be applied to this scenario. Its performance will be evaluated through a holistic set of indicators to obtain the best combination of ECMs that complies with user's objectives. A great reduction in time and higher accuracy in the models are experienced, since they are automatically created and checked. A subjective problem is transformed into a mathematical problem; it simplifies it and ensures a more robust decision-making. This paper will present a case where the platform has been tested.This research work has been partially funded by the European Commission though the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 680676. All related information to the project is available at https://www.opteemal-project.eu

    Micromechanical model for protein materials: From macromolecules to macroscopic fibers

    Get PDF
    We propose a model for the mechanical behavior of protein materials. Based on a limited number of experimental macromolecular parameters (persistence and contour lengths, rate of unfolding dissipation) we obtain the macroscopic behavior of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects which are fundamental in many functions of life. We support our theoretical results by showing that our model is robust and able to reproduce with high quantitive accuracy the cyclic experimental behavior of different keratinous protein materials we tested. We also show the capability of describing, even if with lower precision, the dissipation and permanent strain effects in spider silks

    Data collection and advanced statistical analysis in phytotoxic activity of aerial parts exudates of Salvia spp

    Get PDF
    In order to define the phytotoxic potential of Salvia species a database was developed for fast and efficient data collection in screening studies of the inhibitory activity of Salvia exudates on the germination of Papaver rhoeas L. and Avena sativa L.. The structure of the database is associated with the use of algorithms for calculating the usual germination indices reported in the literature, plus the newly defined indices (Weighted Average Damage, Differential Weighted Average Damage, Germination Weighted Average Velocity) and other variables usually recorded in experiments of phytotoxicity (LC50, LC90). Furthermore, other algorithms were designed to calculate the one-way ANOVA followed by Duncan's multiple range test to highlight automatically significant differences between the species. The database model was designed in order to be suitable also for the development of further analysis based on the artificial neural network approach, using Self-Organising Maps (SOM)

    Fertilizer type influences tomato yield and soil N2O emissions

    Get PDF
    Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N2O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N2O fluxes compared to NH4NO3, although the lowest soil N2O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N2O emission

    Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of Hsp90

    Get PDF
    Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multi-target anti-cancer potential

    Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review

    Get PDF
    Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action
    • 

    corecore