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Abstract Viral infections have always been the

main global health challenge, as several potentially

lethal viruses, including the hepatitis virus, herpes

virus, and influenza virus, have affected human health

for decades. Unfortunately, most licensed antiviral

drugs are characterized by many adverse reactions

and, in the long-term therapy, also develop viral

resistance; for these reasons, researchers have focused

their attention on investigating potential antiviral

molecules from plants. Natural resources indeed offer

a variety of specialized therapeutic metabolites that

have been demonstrated to inhibit viral entry into the

host cells and replication through the regulation of

viral absorption, cell receptor binding, and competi-

tion for the activation of intracellular signaling

pathways. Many active phytochemicals, including

flavonoids, lignans, terpenoids, coumarins, saponins,

alkaloids, etc., have been identified as potential

candidates for preventing and treating viral infections.

Using a systematic approach, this review summarises

the knowledge obtained to date on the in vivo antiviral

activity of specialized metabolites extracted from

plant matrices by focusing on their mechanism of

action.
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Abbreviations

A549 cells Adenocarcinomic human alveolar

basal epithelial cells

ALT Alanine aminotransferase

AST Aspartate aminotransferase

BHK-21 Baby hamster kidney cell line

BW Body weight
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CC50 Half-maximal cytotoxic

concentration

cccDNA Covalently closed circular DNA

CCL-2 C–C motif chemokine ligand 2

CD3? /4? /

8?

Cluster of differentiation 3/4/8

CHIKV Chikungunya virus

CoVs Coronaviruses

COX-2 Cyclooxygenase-2

CTL Cytotoxic T lymphocyte

CVB3 Coxsackievirus B3

CXCL-10 Interferon-c-inducible protein 10

DENV Dengue virus

DGP 6-Deoxyglucose-diphyllin

Dpi Day post infection

EC50 Half maximal effective

concentration

ED50 50% Effective doses for virus

replication

eIF Eukaryotic initiation factor

EMCV Encephalomyocarditis virus

ERK Extracellular signal-regulated kinase

EV71 Enterovirus 71

H1N1 A/Puerto Rico/8/34

H5N1 A/Duck/Guangdong/99

H9N2 A/Chicken/Guangdong/v/2008

HA Hemagglutinin

HALT-C Hepatitis C antiviral long-term

treatment

HBeAg Hepatitis B e-antigen

HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HCMV Human cytomegalovirus

HCV Hepatitis C virus

Hep-2 Human epithelial type 2

HepG2/

2.2.15 cells

Human hepatoblastoma cell line

HEV Hepatitis E virus HPMC:

hydroxypropyl metylcellulose

HO-1 Heme oxygenase-1

hpi Hour post infection

HSK Herpes simplex keratitis

HSV-1/2 Herpes simplex virus 1/2

Huh-7 Human hepatocarcinoma cell line

HW/BW Heart weight/body weight

IAV Influenza A virus

IC50 Half maximal inhibitory

concentration

IC90/99 Drug concentration causing a 90%/

99% growth inhibition

ICAM-1 Intercellular Adhesion Molecule 1

ICP0/4/27 Infected cell protein 0/4/27

ICR mouse Institute of Cancer Research mouse

IFITM3 Interferon-inducible transmembrane

IFN- a-5/a-
17/a-2/c

Interferon-a-5/a-17/a-2/c

IL Interleukin

iNOS Inducible nitric oxide synthase

ISG15/20 Interferon-stimulated gene 15/20

IV Influenza virus

JAK/STAT Janus kinase/signal transducers and

activators of transcription

JEV Murine Japanese encephalitis

MAPK Mitogen activated protein kinase

MCP-1 Monocyte chemoattractant protein 1

MDA Malondialdehyde

MDBK Madin-Darby Bovine Kidney Cell

mDC Myeloid dendritic cell

MDCK Madin-Darby Canine Kidney

MH-S cells Murine Alveolar Macrophage cell

line

MIP-1a/-1b/2 Macrophage Inflammatory Proteins

1a/1b/2
MLD50 Mouse lethal challenge dose 50

Mo-MuLV Moloney murine leukemia virus

mRNA Messenger RNA

MyD88 Myeloid differentiation primary

response protein

N2a Neuro 2a cells

NA Neuraminidase

NF-kB Nuclear factor kappa-light-chain-

enhancer of activated B cells

NQO1 NAD(P)H dehydrogenase [quinone]

1

NS3/4A Serine protease

NS4B Non structural protein 4B

OAS1/2/3 2’-5’-Oligoadenylate synthetase 1/2/

3

PBS Phosphate Buffered Saline

PD-1 Programmed death-1

pDC Plasmacytoid dendritic cells

PEG 400 Polyethylene glycol 400

PEG-PLGA Poly(ethylen glycol)-block-

poly(lactide-co-glycolide)

PGE Prostaglandin

PI3k Phosphoinositide 3-kinases
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RBV Ribavirin

RLRs Retinoic acid-inducible gene I (RIG-

I)-like receptor

ROS Reactive oxygen species

RSV Respiratory syncytial virus

RT Reverse transcriptase

RT-PCR Reverse transcriptase-polymerase

chain reaction

RV Rotovirus

SB-NP Silibinin nanoparticles

SFV Semliki forest virus

SOD Superoxide dismutase

SRB method Sulforhodamine B assay

STAT Signal transducer and activator of

transcription

TAP1 Transporter associated with antigen

processing 1

TCID50/100 50%/100% Tissue culture infectious

dose

TGF-b Transforming growth factor b
Th 1/2 T-helper 1/2

TLR Toll-like receptor

TNF-a Tumor necrosis factor-a
TRAF6 Tumor necrosis factor receptor-

associated factor 6

Treg Regulatory T cells

V-ATPase Vacuolar ATPase

VCAM-1 Vascular cell adhesion protein 1

vRNA Viral RNA

ZIKV Zika virus

cGT c Glutamyl transferase

Introduction

Viruses are ubiquitous organisms that depend on host

structures to replicate; they exist in all environments

and may infect a broad spectrum of life forms, from

plants to bacteria and animals. Structurally viruses are

formed by two essential elements: the nucleic acid

genome, consisting of single-stranded or double- RNA

or DNA, and a capsid that packs and protects the viral

genome and plays a role in the host cell viral entry.

Apart from capsid, some viruses possess an additional

protective layer known as the envelope, which may be

formed by lipids or glycoprotein (Cassedy et al. 2021).

Based on the presence of the envelope, it is possible to

distinguish enveloped viruses like herpes virus sim-

plex 1 and 2 (HSV-1, HSV-2), cytomegalovirus

(HCMV), respiratory syncytial virus (RSV), and

influenza A virus (IAV), and non enveloped viruses

such as coxsackievirus B4 (CVB3), rotavirus (RV),

and enterovirus 71 (EV71). The diffusion of viral

infections is responsible for pandemics development.

Over the course of history, there have been several

outbreaks of disease caused by viral infections, among

them the Spanish flu pandemic (1918–1920), smallpox

(1972), HIV epidemic (1981), SARS (2003), H1N1

pandemic (2009), Ebola Virus (2014–2016), Zika

Virus (2015–2016), until the pneumonia cases of

December 2019 baptized by the WHO with the name

of novel coronavirus (SARS-CoV-2). The issue of a

pandemic is a global problem, and the development of

efficient antivirals is the only way to accelerate the

return to normal conditions. However, one of the virus

infection problems is the occurrence of resistance to

the generally used drugs. Viruses are indeed known to

rapidly mutate their genome during successive repli-

cations, determining the chance for increased antiviral

drug resistance as was seen for human viral diseases

like hepatitis B, hepatitis C, herpes simplex virus, and

influenza virus (Kumar et al. 2020). The modern

approach to antiviral drug discovery is to study the

viral structure and replication details to find targets for

new antiviral drugs (Malone et al. 2022; Shaker et al.

2021). Along with designing tailormade drugs against

specific viral proteins of defined species, a more

traditional strategy to increase the number of drugs

available to treat viral diseases is to screen natural

compounds derived from plants. In line with the

traditional Chinese medicine theory, ‘‘Everything has

its own enemy from nature’’, meaning that in the

world, everything has its proper method of survival

and its way of destruction, thereby preserving nature’s

balance. In fact, it is possible to obtain from nature the

constituents for good health if correctly used (Yao

et al. 2009). Seeking drugs from medicinal plants has

been a practice since ancient times, but it can now

benefit from the use of the continuously growing

number of techniques that scientific progress can offer.

Natural products are an important source of numerous

therapeutic compounds exhibiting antiviral properties

against several viruses. Whether the antiviral mole-

cules are synthetic or natural, a distinction can be

made between direct-acting and indirect-acting antivi-

rals. Direct antivirals block viral proteins and enzymes

123

Phytochem Rev



or inhibit viral pathways essential for viral replication,

thus acting against one or more phases of viral

replication. On the other hand, indirect antivirals

interfere with host intracellular pathways that viruses

exploit and hijack to their advantage without interfer-

ing with the normal function of non-infected cells so as

to be effective and safe (Lou et al. 2014). Noteworthy

is also the antiviral effect exerted by regulating the

host immune system and host levels of radical oxygen

species. Several isolated bioactive molecules of nat-

ural origins, such as terpenes, flavonoids, coumarins,

alkaloids, lignans, and others, have been reported to

possess interesting antiviral properties by acting with

multiple mechanisms of action. Through in vitro and

in vivo investigations, it was indeed demonstrated that

most of these natural compounds might directly inhibit

viral infection and replication stages and/or regulate

host intracellular signaling pathways, which are

essential for virus survival, and, thus, the host immune

state (Mukhtar et al. 2008; Brindisi et al. 2020). This

review illustrates some natural compounds active

in vivo against human viruses, such as influenza

viruses, arbovirus, herpetic viruses, retroviruses, hep-

atitis viruses, enteroviruses, and coronaviruses.

Methods

Search strategy

This systematic review was conducted through a

literature search carried out in April–May 2022

including all results published up to date. For the

literature search, three database (Pubmed, Scopus, and

SciFinder) were questioned using the combination of

the three keywords: ‘‘antiviral’’ and ‘‘benzoic acid’’ or

‘‘anthocyanidin’’ or ‘‘aurone’’ or ‘‘catechin’’ or ‘‘chal-

cone’’ or ‘‘cinnamic acid’’ or ‘‘cyanidin’’ or ‘‘depside’’

or ‘‘ depsidone’’ or ‘‘flavanone’’ or ‘‘flavone’’ or

‘‘flavonoid’’ or ‘‘flavonols’’ or ‘‘isoflavan’’ or ‘‘iso-

flavone’’ or ‘‘phenylpropanoid’’ or ‘‘stilbenoid’’ or

‘‘tannin’’ or ‘‘terpen’’ or ‘‘monoterpene’’ or

‘‘sesquiterpene’’ or ‘‘diterpene’’ or ‘‘triterpene’’ or

‘‘sesterterpene’’ or ‘‘tetraterpene’’ or ‘‘carotenoid’’ or

‘‘saponin’’ or ‘‘alkaloid’’ or ‘‘coumarin’’ or ‘‘diaryl-

heptanoid’’ or ‘‘stirilpiron’’ or ‘‘quinone’’ or ‘‘lignan’’

or ‘‘flavolignan’’ or ‘‘coumestan’’ and ‘‘in vivo’’ or

‘‘clinical’’ or ‘‘clinical trial’’ or ‘‘preclinical’’ or

‘‘mice’’ or ‘‘rat’’ or ‘‘animal’’ or ‘‘patient’’. Additional

research was conducted by using CoVid-19 or SARS-

CoV-2 or coronavirus as keywords.

Investigators were not contacted and unpublished

data were not considered. The review was performed

according to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA)

statement (Faraone et al. 2020a; Porreca et al. 2021).

Study selection

Two investigators (LM and AB) selected the manu-

scripts by screening titles, abstracts, and finally full

texts. In cases of disagreements, a third reviewer

(NDT) was consulted.

The screening phase of the manuscript was based

on the exclusion criteria for the title and abstract as:

not in vivo study (clinical and preclinical), not natural

compound (semisynthetic or synthetic derivatives

were excluded), no single compound (extracts, frac-

tions, enriched extracts were not included), not disease

of interest (antiviral). Also patent, review articles,

meta-analysis, abstracts, conferences, editorials/let-

ters, case reports, and conference proceedings were

excluded from this systematic review. Additional

exclusion criteria were used for full-text screening:

full-text not available, language (only articles pub-

lished in English were analysed), double publication.

Pure compounds extracted from natural matrixes and

pure commercial compounds were included. The

selected articles were carefully reviewed to identify

and exclude the reports that did not fit the criteria

described above. During the analysis of the references

in the selected manuscripts, additional research was

carried out to include other studies that do not meet the

selected keywords.

Data extraction

Each selected full text has been examined by the

authors, and data were collected. In addition, the

following information were recorded and tabulated:

compound, source, virus type, experimental model,

dose, mechanism of action, and outcome measure.

Methodological quality assessment

The risk of bias and quality of the in vivo investiga-

tions was assessed (Faraone et al. 2020b) to evaluate

the study’s quality, including the randomization of the
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treatment allocation, blinded drug administration,

blinded outcome assessment, and outcome measure-

ments. Studies that report information regarding

randomization of animals, blinding, and outcome

measurements have higher methodological quality.

Results and Discussion

Search outcomes

The primary search identified 15,786 reports (472

from PubMed, 8494 from SciFinder, and 6820 from

Scopus). However, 7001 manuscripts were indexed in

more databases and were considered only once,

resulting in 8785 original articles. After an initial

screening of titles and abstracts, 8576 articles were

excluded since they did not meet the inclusion criteria.

Finally, 209 articles were fully analyzed, and among

these, 61 studies were excluded for the language and

the not available full text, but other 38 reports were

added after manual research searching by single

molecules. In total, 186 articles were included for

data extraction. A flowchart describing the progressive

study selection and numbers at each stage is shown in

Fig. 1. The articles selected for this review were

categorically analyzed in relation to the year of

publication, the country where the study was con-

ducted, and the natural compounds evaluated as

antiviral agents on in vivo studies.

The first report included in this review is dated

1968, but the largest number of publications was

published from 2010 with an increasing trend (141

papers, 76%) with at least 10 reports per year (Fig. 2).

Co-authorship research is an important bibliometric

factor and the level of research collaboration is an

index to assess the current status of research in a

specific field. Country co-authorship analysis is an

important form of co-authorship analysis by reflects

the degree of communication between countries as

well as the influential countries in this field. Based on

the bibliographic data collected, the countries’ co-

authorship network visualization map was created

with VOSviewer (Fig. 3). In the process of mapping

the minimum document threshold of a country was set

at 1; there were 4 countries out of 32 listed as

visualization items. The big nodes represent the

influential countries, whereas the links between nodes

represent the cooperative relationships among

institutes. The distance between the nodes and the

thickness of the links represent the level of coopera-

tion among countries. China was at the centre of the

research, and the main partners were USA, Japan and

Germany. Considering the number of documents, the

country lead in the research of natural compounds as

antiviral agents by in vivo studies was China with 95

documents (41.1%), followed by United States of

America (29 documents, 12.6%), Japan (16 docu-

ments, 6.9%), South Korea, and Taiwan (9 documents,

3.9%) (Fig. 4).

Concerning quality assessment, all in vivo studies

were carefully analysed through a standard checklist.

As reported in Fig. 5, almost all studies described the

objectives, outcomes to be measured, main findings

obtained as well as the route of administration and the

frequency of treatments. In addition, 55 studies

(29.6%) established that the allocation was random-

ized, and 70.4% of the included articles reported

sample size calculations.

Phytochemicals and antiviral activity

TheWorld Health Organisation (WHO) encourages the

use of herbal medicines as remedies to overcome the

absence or inactivity of conventional therapy. Emphasis

is placed on the study of specialized metabolites

extracted from natural sources, their chemical structure

and pharmacological activity in order to use them for

treating or preventing illnesses with lower toxicity than

the existing molecules. In this context phytochemicals,

such as flavonoids, terpenoids, coumarins, lignans,

saponins, etc., are reported to regulate viral cellular

functions, permeability throughout the host membrane,

and replication, making them potential molecules for

producing new effective anti-viral drugs. Table 1 listed

the main natural active molecules with proved in vivo

anti-viral activity, while in the text, their mechanism of

action was treated.

Terpenes

Terpenes are one of the largest classes of specialized

metabolites, comprising over two-thirds of com-

pounds. They are biosynthesized by fungi, plants,

and bacteria and are the major essential oils compo-

nents. Terpenes consist of isoprene unity based on

which it is possible to distinguish monoterpenes,

sesquiterpenes, diterpenes, sesterpenes, triterpenes,
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etc. (Perveen 2021). Terpenes have attracted particular

attention for their antiviral action, specifically against

the influenza virus but also against hepatitis viruses

and herpes simplex viruses. The antiviral may be

related whit their structure; e.g. it was demonstrated

that terpenoid skeleton spatial arrangement, when

linked with an a-methylene-c-moiety, determines an

increase in antiviral activity (Hwang et al. 2006). This

section will discuss what is known about the pre-

clinical antiviral activity of terpenes to date.

Monoterpenes and Iridoids

Monoterpenes consist of two isoprene units (C10), and

their structure is extensively related to the antiviral

and anti-inflammatory activity (Perveen 2021).

Specifically, 1,8-cineole, or eucalyptol, a bicyclic

monoterpene from Eucalyptus spp. (Myrtaceae)

essential oil has shown interesting activity against

IAV, both alone and in combination with Oseltamivir,

a known antiviral drug that acts as a neuraminidase
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Fig. 1 PRISMA flow chart of the systematic review on natural antivirals
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enzyme inhibitor blocking the virus diffusion. Several

studies have demonstrated that influenza virus infec-

tions are markedly related to a systemic inflammation

characterized by the so-called ‘‘cytokine storm,’’

which is supposed to increase mortality (Chan et al.

2005). NF-jB is involved in regulating chemokine and

cytokine release during influenza; thus, the inhibition

of this protein complex may block virus replication

and thus, inflammatory response. In vitro investigation

demonstrated 1,8-cineole anti-inflammatory activity

and inhibitory effect of the nuclear factor NF-jB
(Juergens et al. 1998; Lima et al. 2013), which was

corroborated by in vivo investigation on infectedmice.

In fact, the administration by oral gavage of 1,8-
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Fig. 3 VOSviewer network visualization map of country co-

authorship (International collaboration). Thirty-two countries

had at least 1 publication; the largest set of connected countries

consists of 28 countries in 8 clusters. Different colour refers to

the cluster to which an item belongs, lines represent links

between items, while the larger the item circle, the higher the

item weight
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cineole (30, 60, and 120 mg/kg) resulted in a down-

regulation of IL-1b, IL-6, TNF-a, and IFN-c levels in
the lung and IL-4, IL-5, IL-10, and MCP-1 in nasal

lavage fluids, similar to oseltamivir (10 mg/kg). In

addition, a modest reduction in lung ICAM-1, VCAM-

1, and NF-jB p65 expression was also demonstrated.

Thus 1,8-cineole can protect mice from IAV chal-

lenges, suppressing virus production and inflamma-

tory responses (Li et al. 2016). These results were

confirmed by another in vivo investigation on female

BALB/c mice infected by IAV/Victoria/3/75 (H3N2)

strain, where 1,8-cineole (30, 60, and 120 mg/kg/day)

was orally administrated in association with

oseltamivir (0.1, 0.2, and 0.4 mg/kg/day). In this case,

the combination resulted in a higher protective effect

than monotherapy with either 1,8-cineol or oseltamivir

(Lai et al. 2017). The anti-inflammatory effect also

underlined the anti-IAV action of paeoniflorin, a

monoterpene glucoside from Paeonia lactiflora Pall.

(Paeoniaceae), on influenza virus A/FM/1/47 intrana-

sally infected mice. Paeoniflorin (50 and 100 mg/

kg/day, orally administrated) might indeed reduce the

production of pro-inflammatory cytokines and lung

collagen deposition by down-regulating the expres-

sion levels of NF-jB p65, avb3, TGF-b1, p38MAPK,

and p-Smad2 in lung tissue. Paeoniflorin also has an

Fig. 4 Numbers of documents per country included into the systematic review

Fig. 5 Methodological quality assessment of included studies. Dark gray bars indicate the studies that met each criterion; light gray

bars indicate the studies that did not and white bars indicate the studies with unclear answers
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anti-inflammatory and antifibrotic effect, reducing

acute lung injury related to IAV infection (Yu et al.

2021). Another monoterpene phenol, carvacrol, from

Mosla chinesis Maximim (Lamiaceae), was demon-

strated to protect from the IAV-induced excessive

inflammation in C57BL/6 infected mice (50 mg/

kg/day) by regulating the innate immune response

(Zheng et al. 2021). Similarly, iridoids, small terpene

derivatives falling into the group of monoterpenes,

showed anti-inflammatory and antiviral activity. It

was seen that geniposide, an iridoid glycoside from

Gardenia jasminoides J. Ellis (Rubiaceae), success-

fully blocked cellular injury induced by the pandemic

influenza A/Jiangsu/1/2009 (H1N1) virus and attenu-

ated virus-induced severe lung damage, alleviated

viral titers, and decreased mortality (Guo et al. 2020;

Zhang et al. 2017b). Geniposide intraperitoneal

administration to pandemic A/Jiangsu/1/2009

(H1N1) influenza virus-infected mice (5, 10, and

20 mg/kg/day) was reported to inhibit virus-induced

alveolar haemorrhage and neutrophil infiltration in

lung tissues and to decrease inflammatory mediators

such as TNF-a, INF-c, IL-4, IL-6, and IL-10 (Zhang

et al. 2017b). As in vitro demonstrated, geniposide

(320, 160, 80, and 40 lg/mL) anti-IAV effect should

be PACT-dependent. This molecule may indeed

interfere with the interaction between the double-

stranded RNA-binding protein PACT and IAV poly-

merase, leading to IAV-host infection prevention

(Guo et al. 2020).

Apart from IAV infection, several iridoid deriva-

tives also showed remarkable activity against

encephalomyocarditis (EMCV, Picornaviridae), Sem-

liki forest virus (SFV, Togaviridae), and hepatitis B

virus (HBV). Iridoid glycosides like arbotristoside A

and C, isolated from Nyctanthes arbor-tristis L.

(Oleaceae) and named arbotristosides, showed inter-

esting antiviral activity during in vivo investigation on

CDRI SWISS mice infected with EMCV and SFV.

Arbotristoside A and C (0.5 mg/mouse) showed

promising results in SFV- and EMCV-infected mice

with a protection rate of 60 and 50% and an average

survival time of 6.8 and 6 days. Similarly, crude

ethanolic extract showed significant antiviral activity

at 10 and 20 mg/mouse, while the higher dose

(40 mg/mouse) was toxic (Rathore et al. 1990).

Likewise, a more recent in vitro investigation demon-

strated a pronounced inhibitory activity against SFV

and EMCV for either Nyctanthes arbor-tristis

ethanolic extract, n-butyl fraction, and arbotristoside

A and C. The n-butyl fraction and ethanolic extract, at

a daily dose of 125 mg/kg body weight, also preserved

EMCV-infected mice by 60% and 40%, respectively,

from SFV infection (Gupta et al. 2005). On the other

hand, oleuropein, a secoiridoid glycoside from Jas-

minum officinale L. var. grandiflorum (Oleaceae),

demonstrated anti-hepatitis B activity in both in vitro

and in vivo investigations. Specifically, oleuropein

blocked the HBV antigens secretion (HBsAg) dose-

dependently in infected HepG2 2.2.15 cells (IC50-

= 23.2 lg/mL). It was hypothesized that oleuropein

might directly alter HBsAg gene transcriptional

machinery in the cell as glucocorticoid does, or it

may act by targeting the cell membrane leading to the

delivery to the nucleus of an inhibitory signal as

insulin does. This antiviral activity was corroborated

in vivo, as the intraperitoneal administration of

oleuropein (80 mg/kg twice daily) to DHBV-infected

ducks reduced viremia. However, the real mechanism

by which oleuropein could determine this anti-HBV

effect remains unknown (Zhao et al. 2009a).

Sesquiterpenes

Sesquiterpenes consist of three isoprene units (C15)

and are known to have several biological activities like

antiviral, antifungal, antibacterial, antitumoral, anti-

inflammatory, and insecticidal (Perveen 2021). As

previouslymentioned, the antiviral activity of terpenes

is significantly improved by the fusion with the a-
methylene-c lactone moiety (Hwang et al. 2006), as

demonstrated by the number of studies attesting to the

high activity of sesquiterpene lactone against IAV. In

particular, atractylon, a sesquiterpene lactone from

dried roots of Atractylodes macrocephala Koidz.

(Asteraceae), exhibited interesting antiviral activity

against IAV A/PR/8/34 virus (H1N1) and A/Shen-

zhen/203/2001 (H3N2) in vitro (IC50 = 8.9 and

9.4 lg/mL, respectively), showing greater antiviral

action than ribavirin (IC50 = 14.2 lg/mL), a known

antiviral drug. It seems that atractylon inhibited

agglutination formation by IAV, suggesting that this

sesquiterpene may act by blocking virus absorption by

host cells or inhibiting virus replication. These in vitro

data were further elucidated in vivo on male ICR mice

(10 and 40 mg/kg/day, intragastrically administrated)

since an increase in survival rate and reduction of lung

index and virus load was observed. Furthermore, it
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was demonstrated that the administration of atractylon

increased serum levels of IFN-b, which plays an

important role in influenza infection but decreased the

levels of other pro-inflammatory cytokines such as IL-

6, TNF-a, and IL-1b. Moreover, upregulation of

expression of TLR7, MyD88, TRAF6, and IFN-a
mRNA and downregulation of NF-jB p65 protein

expression in the lung tissues was observed. Hence it is

possible to affirm that the atractylon effect on IAV

infection should be partially due to the activation of

the TLR7 pathway to increase IFN-b expression and

NF-jB p65 inhibition (Cheng et al. 2016). A greater

anti-viral effect than ribavirin was also demonstrated

for pseudoguainolides containing an a,b-unsaturated
cyclopentenone moiety from Centipeda minima (L.)

A. Braun & Asch. (Asteraceae). Specifically, brevilin

A exhibited marked in vitro anti-IAV/Puerto Rico/8/

34 H1N1 activity on MDKC cells since it prevented

the viral life cycle late state and blocked viral

replication by inhibiting M2 protein synthesis; at the

concentration of 8 lM, the brevilin A and ribavirin

inhibition rates were 100% and 38%, respectively

(Zhang et al. 2018). This is a promising result since, to

date, M2 ion channel inhibitors are among the two

classes of antivirals approved by the FDA; examples

of synthetic M2 inhibitors are rimantadine and aman-

tadine. The brevilin A proposed mechanism of action

was further confirmed and integrated by subsequent

in vitro and in vivo investigations. In vitro studies

demonstrated that this sesquiterpene lactone might

inhibit viral replication through three different mech-

anisms: the prevention of vRNA synthesis, viral

mRNA expression, viral ribonucleoproteins nuclear

exportation, and matrix and nonstructural protein

expression (Zhang et al. 2019). Matrix proteins

comprise the M2 protein, a proton-selective channel

protein exposed on the virion surface, and M1, a

structural protein matrix located underneath the viral

envelope. Similarly, for the nonstructural protein NS,

it is possible to distinguish the NS1 protein and the

NS2 protein. NS1 with the nuclear export protein and

M1 is responsible for vRNPs nuclear exportation

during the virus’s life cycle. On the other hand, NS2

plays a key role in modulating immune responses of

the host through interferon (IFN)-antagonist actions to

enhance efficient viral replication (Lin et al. 2020).

Hence by inhibiting these proteins’ expression, bre-

vilin A prevented virus replication. All these mecha-

nisms were in vivo corroborated since brevilin A

intraperitoneal administration (25 mg/kg/day) to

A/PR/8/34 H1N1-infected female BALB/c mice

resulted in a retard time to death with 50% of

surviving after 14 days post-infection (Zhang et al.

2019).

Sesquiterpene lactones from Curcuma longa L.

(Zingiberaceae) essential oil like germacrone and

curdione showed anti-viral activity against IAV (Li

et al. 2020a). Specifically, germacrone, like the other

molecules discussed, exerted its antiviral action during

the IAV (A/PuertoRico/8/34) first step of infection. In

fact, as demonstrated in vitro, in addition to its ability

to prevent viral entry/attachment to the host cell, it

inhibited the expression of viral protein and viral RNA

replication. Contrarily, antiviral activity was not

exerted if germacrone was inoculated after 4 h of

infection, indicating that late stages (i.e., assembly and

release) were not affected (Liao et al. 2013). Under-

lying the prevention of viral replication could be the

ability of germacrone to decrease the expression of

TAP1, a multidrug resistance protein/TAP subfamily

member which could be induced by IAV, leading to its

increased replication (Li et al. 2020a). This mecha-

nism of action was traduced on in vivo model of

infected mice (50 or 100 mg/kg) with a lung index

score reduction and an alleviation of lung tissue

pathological injury resulting in a considerable delay in

mortality. A combination study in mice was conducted

using 100 mg/kg germacrone and 1 mg/kg oseltamivir

to evaluate a possible synergistic action demonstrating

that the combination treatment produced 90% sur-

vival, whereas 50% and 40% survival rates were

obtained when germacrone and oseltamivir were used

alone, respectively (Li et al. 2020a; Liao et al. 2013). If

these molecules acted by inhibiting only the first steps

of viral infection, a tricyclic sesquiterpene from

Pogostemon cablin (Blanco) Benth. (Lamiaceae)

essential oil, the patchouli alcohol, seemed to be

active when added before infection and during

adsorption determining a virus multiplication reduc-

tion. The earliest in vitro studies on this molecule

indicated that it inhibited the NA protein known to

play a key role in releasing new virions from infected

host cells (Wu et al. 2011a). However, a more recent

investigation showed no significant inhibition of

H1N1 viruses’ NA activity. Similarly, the patchouli

alcohol did not significantly block agglutination by

inhibiting virus HA as the sesquiterpene atractylon

did. Patchouli alcohol seemed to act by directly
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inactivating IAV and inhibiting crucial early stages

after virus absorption since intracellular PI3K/Akt and

ERK/MAPK signaling pathways could be involved in

patchouli alcohol anti-IAV action (Yu et al. 2019).

This is an interesting result since the intracellular

PI3K/Akt signaling pathway was implied in aug-

mented virus replication and could be linked with

either RNA or DNA viruses lytic infection, including

IAV (Kindrachuk et al. 2015). Inhibitors of PI3K or its

Akt downstream signal were demonstrated to block

virus entry and replication. Patchouli alcohol was

found to inhibit both PI3K and Akt protein in cells

infected by IAV, indicating that it inhibited PI3K/Akt

signaling pathway activation leading to the inhibition

of virus infection and replication (Yu et al. 2019). In

addition, in vivo investigation on mice infected with

the lethal dosage of H2N1 showed that patchouli

alcohol intragastric administration (20, 40, and 80 mg/

kg/day) exerted viral protection not only through an

anti-inflammatory activity but also by enhancing

immune responses, as confirmed by the increase in

CD3? and CD4? T cell percentages and CD4? /

CD8? ratio, and decreased CD8? T cell levels (Li

et al. 2012). Finally, it was seen that the molecule was

more active than oseltamivir as its intranasal low dose

administration (20 lg/day) was found to have a

comparable antiviral effect to the synthetic drug orally

administered (10 mg/kg/day) (Yu et al. 2019). As

previously mentioned, another protein highly impli-

cated in the initiation of virus infection is HA, a

trimeric surface glycoprotein of IAV. Each HA

monomer comprises 2 subunits, HA1 containing the

receptor-binding domain and HA2 involved in the

fusion between the virus envelope and the cellular

membrane (Shental-Bechor et al. 2002). It was seen

that the sesquiterpene derivative, stachyflin, from

Stachybotrys spp. RF-7260 (Stachybotryaceae),

exerted good in vitro antiviral activity against IAV

(H1N1 and H2N2) with an IC50 of 0.003 lM in

MDBK cells (Taishi et al. 1998). This activity seems

closely related to the inhibition of HA, resulting in the

impossibility of assuming the enzyme conformational

change necessary for the virus fusion with the cell

membrane (Yoshimoto et al. 1999). Specifically, it

was demonstrated that stachyflin inhibited H2, H2,

H5, and H6 influenza viruses’ growth by binding HA2

active site, and so preventing the activation of HA and

the initial steps of viral infection (Motohashi et al.

2013). However, despite this promising in vitro

antiviral activity, when orally administered to mice

(20 mg/mouse), stachyflin demonstrated less activity

due to its low gastrointestinal bioavailability. Con-

trarily, intraperitoneally treatment (2 mg/mouse)

showed a percentage of virus inhibition in the lung

of 64% (Yagi et al. 1999). Hence, different vehicles

were studied to improve stachyflin oral absorption and

polyethylene glycol 400 (PEG400) demonstrating to

improve oral bioavailability and in vivo anti-influenza

effect (Motohashi et al. 2013; Yagi et al. 1999). In fact,

when stachyflin was administred to mice with a

PEG400 solution it was seen a maximum plasma

concentration of 1.68 ± 0.90 in healthy mice and %

virus inhibition in lung of 60 ± 7% in infected ones

(Yagi et al. 1999).

Diterpenes

Diterpenes, terpenes consisting of four isoprene units

(C20), form a large class with more than 10.000

different structures. (Perveen 2021). Most diterpenes

are specialized metabolites and may have roles in the

ecological interactions of plants and contribute to

plant fitness. These compounds are found in plants,

algae, fungi, animals, and coral, and an increasing

number of these terpenes have shown interesting

activities both in vitro and in vivo, including antiviral.

Labdane diterpenes’ skeletal structure can be frag-

mented into a fused decalin system (C1–10) and a

branched six-carbon side chain (C11–16, with C16

attached to C13) at C9. These types of diterpenes

comprise Andrographolide and 14-Deoxy-11,12-dide-

hydroandrographolide, which were reported to have

anti-influenza, anti-HIV, and anti-DENV activity.

Andrographolide, a bitter diterpenoid typical of

Andrographis paniculata (Burm.f.) Nees (Acan-

thaceae), was found to inhibit different influenzas

virus strains like H5N1, H9N2, and H1N1 (Chen et al.

2009). The proposed mechanism of action involved

the inhibition of the RLRs signaling pathway induced

by the virus (Yu et al. 2014). RLRs were able to

recognize the influenza virus RNA structure leading to

the signal transduction pathway activation, including

NF-jB, and the up-regulation of chemokines, anti-

apoptotic proteins, and growth factors gene expression

(Moore and Ting 2008). Hence, andrographolide, by

inhibiting this pathway, may ameliorate IAV infec-

tion. Moreover, this diterpene was also demonstrated

to act downstream RLRs by down-regulating crucial
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inflammatory factors like the NF-jB signal pathway

and JAK/STAT signals (Ding et al. 2017). These data

corroborated results obtained by another investigation

demonstrating that andrographolide inhibited NF-jB
activation dose-dependently by linking the p50

reduced cysteine 62, thereby preventing the binding

of NF-jB to DNA (Hidalgo et al. 2005). Despite these

promising results, andrographolide was less effective

than approved drugs such as oseltamivir or ribavirin in

the immediate treatment. However, it is also true that

licensed anti-viral drugs need to be administrated

immediately after infection since a delay in the

administration (4 days post-infection) led to oselta-

mivir or ribavirin activity like a placebo. In contrast,

andrographolide was effective when used as immedi-

ate and delayed treatment due to its peculiar and

multiple mechanisms of action as demonstrated by

in vivo investigation, where an increase in survival

rate and a decrease in the lung pathology, virus load,

and inflammatory cytokine expression was observed

when administered orally (100 to 200 mg/kg/day

twice daily for 7 days) and intraperitoneally (10 mg/

kg/day) (Chen et al. 2009; Ding et al. 2017). Similarly,

an analogous and metabolite of andrographolide, the

14-deoxy-11,12-didehydroandrographolide, from

Andrographis paniculata (Burm.f.) Nees (Acan-

thaceae), exhibited a good antiviral activity again

H1N1, H3N2, and H5N1. As for andrographolide, its

analogous decreased the upregulated proinflammatory

cytokines/chemokines expression induced by IAV

infection. However, this molecule differed from

andrographolide in inhibiting viral replication by

limiting the exportation from the nucleus to the

cytosol of vRNP complexes required for the final

IAV progeny virions assembly and release (Cai et al.

2015). The anti-inflammatory and anti-viral activity of

14-deoxy-11,12-didehydroandrographolide was

in vivo corroborated since it alleviated lung

histopathology, strongly inhibited the expression of

pro-inflammatory chemokines and cytokines, and

reduced lung virus titres in mice lethally challenged

with IAV at the doses of 1000 mg/kg/day (intragas-

trically administrated) (Cai et al. 2016). As previously

stated, labdane diterpenes also demonstrated antiviral

activity against HIV and DENV. Specifically, in vitro

investigations have shown that either andrographolide

or its analogue reduced the p24 antigen amount on

MT2 cells proposing themselves as potential anti-HIV

molecules (Niranjan Reddy et al. 2005). The p24

antigen is indeed the main viral marker for HIV

infection detection since it appears 2 weeks after HIV

infection as a consequence of an initial viral replica-

tion burst that is associated with high viremia levels

during which the patient is acutely infectious (Bys-

tryak and Acharya 2016). Further, andrographolide

was reported to inhibit cell-to-cell transmission, viral

replication, and syncytia formation in HIV-infected

cells (Chang and Yeung 1988; Yao et al. 1992). The

proposed mechanism of action is related to a decrease

in HIV-infected cells’ c-Mos expression, a protein

required for HIV replication, and inhibition of MAPK

and proteins involved in apoptotic regulation (p53,

c-myc, Bxl-2, Bax, Bclxl) expression. The inhibition

of these apoptotic regulatory proteins’ expression is

indeed involved in inhibiting the formation of HIV-

envelope protein-mediated syncytia (Ma et al. 1997).

Hence andrographolide might act by multiple antiviral

actions, thereby inhibiting the dysregulated signal

transduction pathways essential for viral replication

and the T cell cytopathicity induced by HIV. The

potential application of this diterpene as anti-HIV was

also demonstrated in a phase I clinical trial, where

andrographolide (10 mg/kg body weight three times

per day) determined a significant increase in

CD4? lymphocyte counts in HIV-positive patients,

especially at week 6 of treatment. This effect was

comparable to that seen in other clinical trials

involving synthetic drugs like zidovudine, didanosine,

lamivudine, or ritonavir used in combination or in

monotherapy (Calabrese et al. 2000). Finally, andro-

grapholide showed antiviral activity against dengue

virus (DENV) replication in vitro, and this activity

may be related to an increase of HO-1, an antioxidant

enzyme strongly related to an inhibition of DENV

replication. This assumption was confirmed by the fact

that by using the HO-1 inhibitor SnPP, the andro-

grapholide anti-DENV activity was attenuated. Fur-

ther, in vivo investigations also corroborated the anti-

DENV activity of this diterpene since its intraperi-

toneally administration to infected mice (10 mg/kg)

increased the survival rate by 60% and decreased viral

titer and illness (Tseng et al. 2016).

Apart from labdane diterpenes, tetracyclic diter-

penoids, such as scopadulcic acid B and aphidicolin,

also had an antiviral activity principally against HSV-

1 and HSV-2. Specifically, scopadulcic acid B, from

Scoparia dulcis L. (Scrophulariaceae), showed promi-

nent activity against HSV-1 (IC50 0.012 ± 0.002 lg/
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mL). In vitro experiments have suggested that sco-

padulcic acid B interferes in the early stages of virus

replication, such as the fusion of the viral envelope

with plasmatic membrane, transport of the capsids

through the nuclear pores, and release of the DNA into

the nucleus, and that it has no virucidal effect. Based

on these results, scopaldulcic acid B was also tested

intraperitoneally (20 and 200 mg/kg) and orally (20

and 100 mg/kg) on female golden hamsters to eval-

uate the HSV-1 corneal infection. A reduction of facial

lesions and increased life expectancy in animals was

demonstrated, confirming the potential use of this

molecule as an anti-HSV-1 agent (Hayashi et al.

1988). Similarly, aphidicolin, a diterpene-type antibi-

otic produced by Cephalosporium aphidicola Petch,

inhibited the growth of either HSV-1 or HSV-2,

in vitro and in vivo (Bucknall et al. 1973). In vitro

results demonstrated that aphidicolin, administered on

infected human embryonic lung cells, inhibited the

growth of HSV-1 and HSV-2 with an IC50 value of

0.2 lg/mL. Furthermore, aphidicolin was tested

in vivo to evaluate its efficacy on ocular herpetic

keratitis and herpetic encephalitis. Aphidicolin was

applied at different concentrations (1 and 10 mg/mL)

on the eyes of HSV-1-infected rabbits. The highest

concentration showed a reduced virus challenge and

maximal lesions score comparable to 5-iodo-2-deox-

yuridine (1 mg/mL). Moreover, aphidicolin at 10 mg/

mL could also reduce the severity of keratitis in the

eyes of rabbits infected with a 5-iodo-2-deoxyuridine-

resistant strain (Bucknall et al. 1973). It is known that

HSV encodes for a conserved DNA polymerase which

is necessary for viral genome replication. This DNA

polymerase is an essential therapeutic target; in fact,

the licensed HSV therapies link the HSV polymerase

when it is in the DNA-bound state, thereby blocking

virus replication. Aphidicolin acted as a nucleotide

competing inhibitor, bounding the polymerase active

site and blocking it in the open conformation resulting

in the inability of the virus to replicate its DNA

(Baranovskiy et al. 2014; Hayes et al. 2021).

Sesterterpenes

Sesterpenes, the class of terpenoids consisting of five

isoprene units (C25), are usually found in fungi,

insects, plants, and marine organisms and have several

biological activities like nematocidal, cytotoxic, anti-

inflammatory, anti-viral, and antimicrobial action. In

particular, a fungal sesterterpene from Bipolaris

oryzae (Breda de Haan) Shoemaker (Pleosporaceae),

3-anhydro-6-hydroxy-ophiobolin A, showed

promising antiviral activity against IAV, especially

regarding A/WSN/33 strain. Preliminary in vitro

experiments demonstrated that L435-3 (0.5 lmol/L)

reduced viral titers, hemagglutinin, and nucleoprotein

protein levels, suggesting an evident inhibition of IAV

replication. These results were also confirmed by

in vivo experiments since its intranasal administration

to WSN-infected Balb/c mice (0.3 mg/kg/day)

showed a reduction of symptoms severity, including

pulmonary lesions, inflammation, and atrophy of the

thymus and spleen. In addition, the treatment with

L435-3 significantly reduces the viral titers in the

lungs of WSN-infected mice and the protein levels of

hemagglutinin and nucleoprotein, corroborating

in vitro investigations. Investigations to understand

the L435-3 mechanism of action revealed an increase

in IL-28, ISG15, and ISG20 expression levels in either

IAV-infected cell lines or mice. Hence, L435-3

increased the expression level of type III interferons

and various interferon-stimulated genes (ISGs),

thereby inhibiting IAV replication (Wang et al. 2016).

Triterpenes

Triterpenes, one of the major classes of specialized

metabolites, are formed by six isoprene units (C30) and

have demonstrated promising activity against hepatitis

virus infections. Hepatitis virus is known to be the

main cause of inflammatory liver disease; it is possible

to distinguish five different types of hepatitis viruses

represented by hepatitis A (HAV), B (HBV), C

(HCV), D (HDV), and E (HEV) all of which derived

from different virus families. Different triterpenes

showed anti-hepatitis B, C, and E activity. Methyl

helicterate, a triterpenoid isolated from Helicteres

angustifolia L. (Malvaceae), demonstrated anti-HBV

activity in vitro and vivo. The compound markedly

decreased HBsAg and HBeAg secretion, HBV DNA

and cccDNA levels, and viral RNA. The first inter-

mediate generated when HBV enters the hepatocytes

is cccDNA, whose presence signals intracellular HBV

replication and infection initiation. The permanency

of cccDNA in hepatocyte nuclei after anti-viral drug

suspension is thought to be the main contributor to

hepatitis B recurrence. For this reason, nuclear

cccDNA levels are an important index to evaluate as

123

Phytochem Rev



a predictor of the new anti-HBV agent’s effective

antiviral activity. Methyl helicterate reducing effect

on liver cccDNA and total viral DNA levels was also

in vivo confirmed on DHBV-infected ducks (50 or

100 mg/kg of compound orally administered). More-

over, in animal models, it was also possible to observe

histopathological improvement, demonstrating that

methyl helicterate exhibited protective effects on liver

injury induced by HBV. These effects are more

important than that seen for Lamivudine, a licensed

drug used for HBV infection treatment, administered

at the same doses (100 mg/kg) (Huang et al. 2013a).

Betulinic acid, a pentacyclic lupane-type triterpene

isolated from Anemone chinensis Bunge (Ranuncu-

laceae), acts against HBV infection with a different

mechanism of action. Specifically, it seemed to inhibit

a host antioxidant enzyme, the manganese superoxide

dismutase, involved in scavenging superoxide anions

to generate hydrogen peroxide. For biological sys-

tems, SOD2 overexpression is favourable for protect-

ing against cell damage mediated by ROS, but it may

improve the possibility of a viral infection by stimu-

lating virus replication. Therefore, inhibiting SOD2

activity could be a target to reduce HBV invasivity.

Betulinic acid has been demonstrated to inhibit SOD2

expression levels resulting in reduced HBsAg,

HBeAg, HBV DNA levels, and HBV X protein

(HBx) expression (Yao et al. 2009). The last result is

important since HBx is highly involved in HBV-

induced hepatocellular carcinoma by promoting cell

cycle progression, inactivating negative growth fac-

tors, and downregulating the tumor suppressor gene

p53(Kew 2011). Betulinic acid anti-HBV mechanism

of action involving SOD2 is confirmed by the

evidence that an induced SOD2 overexpression during

compound treatment totally abrogated its antiviral

activity while a SOD2 knockdown mimicked the

compound anti-HBV effect. Corroborating this data

are those from in vivo investigations by which it was

possible to observe that betulinic acid (2 mg/kg/day)

increased the superoxide anion levels in the liver, the

main organ affected by HBV infection. In fact, little

effect was seen in aorta tissues, and no effect was

observed in kidney and brain tissues, demonstrating

that betulinic acid could be a good anti-HBC drug by

specifically acting on hepatocytes (Yao et al. 2009).

Betulinic acid was also investigated for its anti-IAV

activity, and it was seen that it did not inhibit IAV

replication as done for HBV but reduced lung damage.

In fact, its intraperitoneal administration (10 mg/

kg/day) to infected mice showed anti-inflammatory

properties by reducing INF-c levels, leading to

improved viral-related inflammatory lung diseases

(Hong et al. 2015). While the compounds discussed

above act mainly by inhibiting viral replication, the

schizandronic acid, a tetracyclic triterpenoid from

Schisandra sphenanthera Rehd. et Wils (Schisan-

draceae), acts by inhibiting HV entry into the host cell.

Specifically, schizandronic acid antiviral activity was

studied against HCV. It is known that the entry of this

virus throughout hepatocytes involves several factors

comprising either the host cell machinery or viral

envelope glycoproteins (Barth et al. 2003; Syed et al.

2014). The low-density lipoprotein receptor and

glycosaminoglycans showed to play an important role

in concentrating HCV particles on hepatocytes sur-

faces. The compound structure looks like cholesterol,

an essential element for HCV cell entry; hence, it was

thought that this molecule acted by altering the host

cell membrane’s fluidity. This mechanism of action

might be responsible for the antiviral activity in mice

treated with schizandronic acid (5 mg/kg/day via

intraperitoneal injection) 2 weeks before virus inocu-

lation and one week later. Compared to the control,

HCV infection and viral RNA levels decreased in

treated mice. Based on this data, schizandronic acid

could be considered a lead compound for developing

entry inhibitors to be combined with direct-acting

antivirals currently used in treating HCV infection

(Qian et al. 2016).

20(S)-protopanaxtriol, one of the most important

triterpenes extracted from the roots of Panax notogin-

seng (Burk.) F.H. Chen (Araliaceae) was studied for

its antiviral activity against coxsackievirus B3

(CVB3), a virus linked to viral myocarditis. This

triterpene seems to exert its antiviral properties

through anti-inflammatory and anti-apoptotic activity.

The oral administration of 20(S)-protopanaxtriol to

mice (100, 200 and 400 mg/kg/day) significantly

reduced heart viral titer, lowering myocardium dam-

age and mononuclear cell infiltration (Wang et al.

2012). Similarly, celastrol, a quinone methide triter-

pene from the root of Tripterygium wilfordii Hook. f.

(Celastraceae), showed an indirect antiviral activity

against DENV infection. It was indeed observed that

this molecule inhibits DENV replication by upregu-

lating IFN expression and activating the downstream

Jak-STAT signaling pathway leading to an increase in
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IFN-a-2, IFN-a-5, OAS1, OAS2, and OAS3 gene

expression levels (Yu et al. 2017a). Finally, lupeol, a

common pentacyclic triterpene from the roots of

Carissa spinarum L. (Apocynaceae), showed promis-

ing antiviral activity against the HSV-1 strain resistant

to acyclovir using in vivo models (5, 10, and 20 mg/

kg/day, orally administrated). Moreover, its mecha-

nism of action needs to be investigated (Tolo et al.

2010). The anti-HSV-1 mechanism is instead clear for

oleanolic acid (EC50 = 6.8 mg/mL), a pentacyclic

triterpenoid found in different natural products, which

had been demonstrated to prevent the immediate-early

phase of infection. An in vivo investigation showed

that oleanolic acid acted by inhibiting viral UL8, an

essential component of the viral helicase involved in

HSV-1 replication; as a result, an amelioration of skin

lesions was observed in infected mice treated with 50

lL of a gel preparation containing 1 mg/g and 0.5 mg/

g oleanolic acid (Shan et al. 2021).

Saponins

Saponins, chemically designated as steroid and triter-

penes glycosides, consist of non-polar aglycones

bonded to a variable number of monosaccharides.

The term saponin derives from the Latin ‘‘Sapo’’ and

refers to its soap-like behavior in water attributable to

the combination of polar and non-polar structural

moieties. These active molecules are found in several

organisms but are most commonly found in plants,

producing them as a defence mechanism (Sharma

et al. 2021). Regarding saponin antiviral action, it

seems to act against different viral strains. Oleanane-

type triterpenoid saponins like Saikosaponin A, Gly-

cyrrhizin, and Polyphylla saponin I have shown an

interesting anti-IAV activity induced by a reduction in

inflammation. Specifically, saikosaponin A, from

Bupleurum genus (Apiaceae), attenuated in vitro the

IAV replication (IC50 of 1.98, 2.21, and 2.07 lM for

H1N1 (PR8), H9N2, and H5N1, respectively) by

inhibiting the NF-jB signaling pathway and caspase 3

associated with the cytosol release of vRNP. As

mentioned before, NF-jB activation is a fundamental

requisite for IAV (H1N1 (PR8), H9N2, and H5N1)

replication but is also responsible for the high

inflammatory process associated with IAV infection.

Saikosaponin A subcutaneous administration (25 mg/

kg/day) to infected mice determines an attenuation of

lung monocyte and neutrophil recruitment and a

decrease in the lung pro-inflammatory cytokines

(IFN-c, IL-6, and TNF-a), thereby corroborating NF-

jB upregulation (Chen et al. 2015). It is known that

IFN-c may exert a detrimental role in the IAV

pathogenesis, leading to an increase in tissue damage;

however, it is also true that it is a critical cytokine

involved in the regulation of either adaptive or innate

immune response necessary for contrasting viral

infection(Califano et al. 2018). If saikosaponin A acts

by decreasing INF-c levels, glycyrrhizin, from Gly-

cyrrhiza uralensis Fisch. (Fabaceae), mediated its

antiviral action by stimulating INF-c release from T

cells in IAV-infected (H2N2) mice (10 mg/kg/day,

intraperitoneally administrated) (Utsunomiya et al.

1997). However, these data conflict with more recent

in vitro investigations showing the anti-inflammatory

activity of this compound by decreasing pro-inflam-

matory cytokine levels. It was indeed demonstrated

that glycyrrhizin (25, 50, and 100 lg/mL) anti-

influenza activity was related to the inhibition of

CXCL10, CCL5, and IL-6 production and the reduction

of lung reactive oxygen species generation with the

consequent avoidance of p38, JNK, and NF-jB
activation (Michaelis et al. 2011) without interfering

with viral replication (Michaelis et al. 2010). The anti-

inflammatory activity also seems related to the anti-

IAV action of polyphylla saponin I, from Paris

polyphylla var. yunnanensis (Franch.) Hand.-Mazz.

(Melanthiaceae) (Man et al. 2009). In fact, the oral

administration of this compound to IAV-infected mice

(5 and 10 mg/kg/day) significantly improved lung

tissue pathologic histology and decreased the mortal-

ity index. As demonstrated by in vitro investigation,

polyphylla saponin I also interfere with viral replica-

tion; however, the effective mechanism of action

needs to be discovered (Pu et al. 2015). Another

oleanane-type triterpene saponin, chikusetsusaponin

IVa, from Alternanthera philoxeroides (Mart.) Griseb

(Amaranthaceae), did not show an anti-viral activity

against IAV but has in vitro proved to be effective on

other enveloped viruses like HSV-1, HSV-2, HCMV,

measles virus, and mumps virus (CC50/IC50 of 29, 30,

73, 25, and 25, respectively). Chikusetsusaponin IVa

seemed to act damaging virus envelope leading to a

reduction of virus infections. Specifically, this saponin

did not inhibit viral attachment and penetration into

the host cells or viral synthesis, as it acted by

inactivating the progeny viruses released from

infected cells, thereby reducing the viral load on
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uninfected cells (Rattanathongkom et al. 2009). Cor-

roborating in vitro data come in vivo investigation

demonstrating that 20 lL containing 0.1 or 0.2 mg of

chikusetsusaponin IVa administered intravaginally to

HSV-2 -infected BALB/c mice from 3 days before

HSV-2 infection to 7 days after infection resulted in

dose-dependent protection by increasing survival rate

and reducing herpetic lesions severity (Rat-

tanathongkom et al. 2009). Apart from oleanane-type

triterpenoid saponins, also dammarane-type triterpe-

nes saponins showed anti-influenza activity.Ginseno-

sides from the American ginseng, Panax

quinquefolius L. (Araliaceae), are known to have a

potent anti-inflammatory activity exerted by lowering

the production of pro-inflammatory enzymes such as

COX2 and iNOS thanks to the down-regulation of the

NF-jB signaling pathway. The ginsenoside Rb1 also

reduced the release of TNF-a from macrophages

through the inhibition of NF-jB (Kim et al. 2017) and

was found to carry out an anti-IAV activity (in mice

infected with 103EID50 of H1N1 pre-incubated with 1

and 2 mg/mL Rb1) by interfering with the viral HA

leading to the attachment avoidance to the a2-3’
salicylic acid receptor of the host cell. It was also

demonstrated that the entity of the interaction between

ginsenosides and HA is highly related to the number of

sugar moieties attached (Dong et al. 2017). This result

corroborates those from previous investigations, indi-

cating that sugar motifs and the hydroxyl group

number regulated the antioxidant activity of ginseno-

sides (Zhao et al. 2009b). Ginsenoside Rb1 also

exerted an anti-EV71 activity using in vitro (IC50-

= 0.15 lM) and in vivo (5, 10, and 20 mg/kg/day,

intraperitoneally administrated) models not only by

increasing the humoral immune response but also by

inhibiting the EV71-induced viral protein-2, which is

the main EV71 virulence factor for its entrance into

the host cells (Kang et al. 2021b). Furthermore,

ginsenosides derivatives (Rg6 and Rgx365) incorpo-

rated into PEGylated nanoparticle albumin-bound to

promote and prolong their bioactivity had been shown

as potential molecules for alleviating the inflammation

in SARS-CoV-2 ICU patients, thereby reducing the

cytokine storm and coagulation. Specifically, it was

demonstrated that the formulation might suppress

histone H4 elevation and the consequent cytokine

storm via down-regulating the NF-jB signaling path-

way (Park et al. 2021). Another glycosylated triter-

penoid saponin from Platycodon grandiflorum

(Campanulaceae), the platycodin D, demonstrated to

interfere with SARS-CoV-2 infection by preventing

its entry into the host cells through an alteration of its

membrane cholesterol distribution. This activity is

related to the molecule structure since it and choles-

terol possess a similar size and hydrophobicity; the

major differences arise from the presence of an

additional elaborate sugar moiety in platycodin D,

which cholesterol lacks and that is highly hydrophilic

for the presence of sugar moiety hydroxyl groups. This

led to the observation that, while platycodin D is

similar to cholesterol within the lipid bilayer, outside,

the molecule is profoundly different, resulting in a

physical hindrance formed by the sugar tail extending

out of the membrane. Thanks to this mechanism of

action, platycodin D provided a possible SARS-CoV-2

infection therapeutic strategy (Kim et al. 2021). As

well as Ginsenoside Rb1, anemoside B4, a natural

saponin isolated from Pulsatilla chinensis (Bunge)

Regel (Ranunculaceae). P. chinensis roots, exerted an

anti-EV71 by regulating the host inflammatory

response, as demonstrated in vitro (IC50-

= 24.95 ± 0.05 lM) and in vivo on infected mice

(200 mg/kg/day, intraperitoneally administrated). In

particular, the molecules might regulate the Hippo

pathway leading to the yes-associated protein phos-

phorylation and inactivation. The abrogation of YAP/

TAZ inhibitory effect on TANK-binding kinase 1

(TBK1) determines the activation of INF-I genes and

so the inhibition of EV-71 replication (Kang et al.

2021a). Saponins also showed anti-HBV action.

Specifically, Asiaticoside, from Hydrocotyle sibthor-

pioides Lam. (Araliaceae), exerted its antiviral activity

by suppressing in vitro the level of HBsAg (IC50-

= 56.9 lM at 7 day and 52.1 lM at 14 day) and

HBeAg (IC50 = 84.2 lM at 7 day and 67.8 lM at

14 day), extracellular viral DNA, and intracellular

cccDNA. In particular, this saponin seemed to

markedly reduce the transcription and replication of

viral DNA through the activity inhibition of s1, s2, and

X genes promoters (Huang et al. 2013b). These HBV

promoters may operate as molecular switches, affect-

ing gene activity; deletion of a ’switch’ can addition-

ally impair transcription and translation of the HBV

gene, resulting in an inhibition of viral replication

overall (Pang et al. 2010a, b). HBV inhibition

replication was further confirmed in DHBV infected

ducks, where a reduction in HBsAg, HBeAg, and viral

DNA was also observed. In addition, the in vivo
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investigation on infected ducks demonstrated that,

when compared to lamivudine used as control, asiati-

coside (10 and 20 mg/kg/day, intragastrically admin-

istrated) was more efficacious in inhibiting HBsAg,

HBeAg, and viral DNA rebound, indicating the long-

duration effect of this natural molecule. Noteworthy is

the effect on the liver as asiaticoside significantly

lowered ALT/AST levels, suggesting that, close to its

antiviral activity, there was also an improvement in

serum biochemistry and hepatocellular architecture

(Huang et al. 2013b). Likewise, the triterpenoid

saponin 2a,3b,19a-trihydroxyurs-12-en-28-oic acid

b-D-glucopyranosyl ester, from the Tibetan herb

Potentilla anserina L. (Rosaceae), revealed the ability

to reduce in vitro HBsAg (IC50 = 57.67 lg/mL) and

HBeAg (IC50 = 30.05 lg/mL). Moreover, it inhibited

HBV at IC50 value 19.45 lg/mL. These preliminary

experiments were the basis for in vivo experiments

performed on Pekin ducklings. More precisely, the

compound tested via oral administration at the doses

0.2 and 0.1 g/kg for 5 days inhibited virus DNA

replication at 30.30% and 22.16% compared to the

control. In addition, the treatment with the molecule at

0.2 g/kg for 10 days significantly reduced virus DNA

replication at 58.48% (Zhao et al. 2008).

Until now, the antiviral effect was on envelope

viruses, but saponins also showed activity on viruses

without envelopes. Astragaloside IV, a cycloartane-

type triterpene saponin from the roots of Astragalus

membranaceus (Fish.) Bunge (Fabaceae), showed

promising activity in myocarditis induced by CVB3.

Preliminary experiments on primarily cultured

myocardial cells revealed that astragaloside IV (1

and 5 lg/mL) has an antiviral effect. Subsequent

experiments were performed in vivo on CVB3

infected-BALB/c mice (60 and 120 mg/kg, intraperi-

toneally administrated), showing that astragaloside IV

induced a significant decrease in heart necrosis and

mononuclear cell infiltration. Moreover, an increase in

interferon-c mRNA expression and a significant

decrease in heart weight/body weight ratio (HW/

BW) were detected. Finally, a serum pharmacological

experiment was performed using the diluted serum of

Sprague–Dawley rats, previously treated with

100 mg/kg twice a day for 3 days of astragaloside

IV. The blood, taken 1 h after the last dose, induced a

decrease in virus titers in primarily cultured myocar-

dial cells. This saponin seemed to act by increasing the

expression of INF-c mRNA and the levels of INF-c, a

cytokine known to lower viral replication or promote

the apoptosis of infected cells. These results make

astragaloside IV a potential molecule usable for viral

myocarditis (Zhang et al. 2006a).

Flavonoids

Flavonoids are specialized metabolites highly dis-

tributed in the plant kingdom, and, up to now, more

than 600 varieties have been structurally identified.

These compounds are characterized by a flavan

nucleus consisting of a skeleton of 15 carbon units

forming two benzene rings connected via a pyrene

ring. Based on the different chemical substituents in

the flavan nucleus, it is possible to distinguish several

classes of flavonoids known for their broad spectrum

of healthy activities such as antioxidant, anti-inflam-

matory, antiviral, anticancer, antibacterial, and neu-

roprotective activity (Dias et al. 2021). This section

reviewed the knowledge about the antiviral activities

of flavonoids.

Flavones

Flavones, the major class in the flavonoid family, are

compounds whit a double bond in the flavonoid

skeleton between C-2 and C-3, oxidized at the C-4 and

without substituent at the C-3 positions. These active

molecules act by different mechanisms of action

against several viral strains. Specifically, Scutellaria

baicalensis Georgi (Lamiaceae) is a specie rich in

secondary metabolites with promising antiviral activ-

ity, especially against IAV infections, such as

baicalein, isoscutellarein, and oroxylin A. Baicalein

(5,6,7-trihydroxyflavone) demonstrated anti-influenza

activity both in vivo and in vitro (Chen et al. 2011; Xu

et al. 2010), even if it seemed to be related to its main

metabolite baicalin. Bioavailability tests were there-

fore carried out to see the concentration of the active

metabolite baicalin in the bloodstream following the

oral administration of baicalein or baicalin as such.

After baicalein oral administration, baicalin reached

the maximum level by 2.5 h; on the contrary, after oral

administration of baicalin, 10 h were required to reach

the maximum levels, which, however, are lower than

that obtained after baicalein administration. Baica-

lein’s assumption is then more effective than baicalin,

and this is due to the glucoside moiety present in the

structure of baicalin which makes it difficult to be
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absorbed. In fact, after oral administration, baicalin

was first converted by sugar removal into baicalein via

the intestinal b-glucuronidase; hence baicalein was

metabolized into the liver to form different metabo-

lites, of which the main one is the active baicalin (Xu

et al. 2010). The anti-IAV (H1N1) activity of baicalin

was related to the induction of IFN-c release from

CD4? and CD8? and natural killer (NK) cells and as a

consequence of JAK/STAT-signaling pathway acti-

vation. (Chu et al. 2015). The activation of this last

signaling pathway by baicalin seemed to be also

related to its capacity in modulating the function of

NS1 protein, encoded by IAV and known to antago-

nize cellular antiviral responses by lowering IFN

induction and increasing the PI3K/Akt signaling

pathway (Nayak et al. 2014). Another mechanism by

which baicalin might exert its antiviral activity is

related to the modulation of micro-RNAs (mi-RNAs),

a class of little non-coding RNA molecules having an

important role in blocking the translation or promoting

the degradation of mRNAs. It was seen that host

microRNAs are highly implicated in adaptive and

innate immune reactions and host anti-pathogenic

reactions, mainly acting by regulating the host

immune system’s vital components. During IAV

infection, it is possible to observe a dysregulation of

microRNA profiles (for example, miR-146a and miR-

155), down-regulation of type I IFN production, and

the consequent inactivation of the JAK/STAT signal-

ing pathway. In vivo investigations demonstrated that

baicalin acted via suppressing miR-146a with the

consequent activation of type I INF response (Li and

Wang 2019). With an opposite mechanism of action,

baicalin reacted to the lung infection caused by the

respiratory syncytial virus (RSV). Specifically, oral

administration of baicalin (50, 100, 200 mg/kg/day)

resulted in a marked reduction of CD4 and CD8 T

lymphocytes and macrophage infiltration in the lung

tissues of infected mice, lowering inflammation and

viral load. This last effect was most pronounced when

baicalin was administered at 100 and 200 mg/kg/day

(Shi et al. 2016). Either IAV or RSV viruses are part of

the enveloped viruses class; however, baicalin also

effectively contrasts the diseases caused by RV, a non-

enveloped virus responsible for causing gastroenteritis

in children. RV infection determines a reduction in

glucose uptake by host cells; baicalin seemed to

reverse this condition, possibly through the restoration

of sodium-glucose transporter involved in glucose and

sodium ions absorption, thereby restoring water-salt

balance. This may also account for reducing diarrhoea

observed in infected mice after baicalin oral admin-

istration (0.15 and 0.30 mg/g). Further, baicalin also

avoided gluconeogenesis, contrasting RV ability in

enhancing the activity of two rate-limiting enzymes

G-6-Pase, and phosphoenolpyruvate carboxykinase

and exerting a down-regulation against p-JNK with a

consequence up-regulation of pyruvate dehydroge-

nase kinase 1, Akt, and SIK2 and the inhibition of

CBP-CREEB-TORC2 complex formation. These

actions not only regulated gluconeogenesis and pre-

vented the RV’s ability to divert gluconeogenesis for

saccharide synthesis from non-saccharide substances

but also inhibited RV replication in host cells (Song

et al. 2021). Similarly to baicalein, also isoscutel-

larein (5,7,8,4’-tetrahydroxyflavone) and its deriva-

tive isoscutellarein 8-methylether, demonstrated an

anti-IAV (A/PR/8/34) activity both in vivo and in vitro

(Nagai et al. 1992, 1995). However, contrarily to

baicalin, the isoscutellarein derivative might act

directly on the virus’s early-stage infection cycle by

avoiding the fusion between the endosome/lisosome

membrane and the viral envelope (Nagai et al. 1995).

Oroxylin A, an O-methylated flavone, on the other

hand, appeared to act with a double mechanism since it

directly affected the virus by inhibiting M1 gene

transcription and protein synthesis, which is essential

for the integrity of IAV, and NA, avoiding the virus

diffusion, and indirectly by enhancing the host antivi-

ral defence through the promotion of IFN secretion,

especially that of INF-c and INF-b. These effects are
in vivo corroborated since the oral administration of

oroxylin A (25, 50, and 100 mg/kg/day) reduced the

body weight loss, increased the survival rate, and

ameliorated the pathological changes in the lungs

induced by viral infection (Jin et al. 2018). Oroxylin A

(intraperitoneally administrated to mice at 10 mg/

kg/day) was also active against the non-enveloped

RNA virus CVB3, on which it acted by decreasing

serum inflammatory cytokine levels and the severity

of histopathological lesions in infected mice. Finally,

this molecule prevented CVB3-induced cytotoxicity

by avoiding eIF2a phosphorylation in response to

endoplasmic reticulum stress (Kwon et al. 2016).

eIF2a phosphorylation is indeed linked to the forma-

tion of intracellular stress granules and macroau-

tophagy, leading to cell death (Bezu et al. 2018).
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Flavones have also been reported to exert a

protective role again HBV infection. Nobiletin, a

polymethoxyflavone synthesized in citrus fruit peel

(Rutaceae), possessed significant protective properties

against the liver and also a promising antiviral activity

against HBV either in vivo (15 mg/kg once two days

via oral administration) or in vitro (7.5 15, 30, and

60 lM). It acted by suppressing HBsAg secretion and

eliminating HBV core DNA. As in vivo demonstrated,

this anti-HBV activity was enhanced by the combina-

tion with entecavir (nobiletin 15 mg/kg ? entecavir

0.02 mg/kg), an approved drug administered during

HBV infection, which only reduced HBV DNA levels

without reducing HBsAg (Hu et al. 2020). In the same

way, swertisin, extracted from Iris tectorum Maxim

rhizomes, exerted in vivo anti-HBV activity (5 mg/kg

every other day via intraperitoneal administration) by

suppressing HBsAg and HBeAg secretion and elim-

inating intracellular HBV DNA. Also, in this case, the

antiviral activity of swertisin is increased when used in

synergy with entecavir (swertisin 5 mg/kg ? ente-

cavir 0.03 mg/kg) (Xu et al. 2020). Another flavone

that has in vivo demonstrated anti-HBV activity is

luteolin (20 mg/kg/day, intraperitoneal administra-

tion), a 30,40,5,7-tetrahydroxy flavone naturally occur-

ring as a glycosylated form and found in several types

of plants, including vegetables, spices, and medicinal

herbs. For this active metabolite, the mechanism

underlying the reduction of HBV antigens and HBV

DNA replication was investigated. Specifically, lute-

olin prevented the hepatocyte nuclear transcription

factor-4a from binding to the preC/C promoter,

inhibiting its expression. The hepatocyte factor is

indeed an important transcription factor that plays a

pivotal role in regulating HBV transcription and

replication by binding DNA as homodimers. Its

suppression induced by luteolin seemed related to

the activation of extracellular regulated kinase since

its inhibition attenuated luteolin anti-HBV activity

(Bai et al. 2016). Luteolin also inhibited in vivo

(100 mg/kg/day, oral administration) the replication

of DENV-2 by obstructing its later lifecycle stage. An

important step in the infectious virion’s production

that occurs before exiting the infected cell occurs in

the trans-Golgi network, where the prM protein is

broken down by the host proprotein convertase furin

protease. This led to a membrane-anchored M-stump

and a ’pr’ peptide that stays bound to the virus particle

until it is secreted. Luteolin was found to inhibit the

dengue viral lifecycle by inhibiting, in an uncompet-

itive mode, the host proprotein convertase furin

protease, thereby obtaining an incorrect breaking of

prM protein. In this way, the virus’s maturation

processes were disrupted, producing less mature virus

particles and abrogating viral replication (Peng et al.

2017). The antiviral effect of this flavone was also

in vivo investigated against non-enveloped viruses

like human enterovirus A71, and it was seen that

luteolin (2 and 10 mg/kg/day, intraperitoneal admin-

istration), as well as apigenin (10 and 50 mg/kg/day,

intraperitoneal administration), reduced either EV71

RNA or protein synthesis but with different mecha-

nisms of action (Dai et al. 2019). Specifically, luteolin

seemed to target the EV71 post-attachment stage (Xu

et al. 2014), while apigenin disrupted the association

between the viral RNA and the trans-acting factor and

modulated the cellular JNK signaling pathway (Lv

et al. 2014a).

As well as nobiletin, from the Citrus genus comes

the polymethoxylated flavone tangeretin, which

showed potential antiviral activity against the human

respiratory syncytial virus (RSV). This virus is

characterized by determining a persistent activation

of NF-jB, which results in an excessive gene expres-

sion of pro-inflammatory cytokines. Tangeretin was

demonstrated to inhibit RSV replication and suppress

the viral-induced inflammation in infected mice (25,

50, or 100 mg/kg/day, intragastrically administrated),

probably by preventing NF- jB activation resulting in

reduced levels of IL-1b secretion. However, this

molecule did not decrease the mRNA expression and

secretion of pro-inflammatory cytokines like INF-c,
IL-4, and IL17a, indicating that tangeretin might

modulate RSV inflammatory response by regulating

innate but not adaptive immunity (Xu et al. 2015).

Flavonols

Flavonols are the most common flavonoids and are

particularly ubiquitous in plant food. Also known as 3-

hydroxyflavones, these molecules possess a charac-

teristic hydroxyl group at position 3, a double bond

between positions 2 and 3, and a ketone group at

position 4 of the C ring. Flavonols are reported as

compounds exerting the most diverse and interesting

biofunctions; quercetin and its derivatives are the most

investigated for their antiviral activities. Early in vivo

investigations demonstrated that quercetin protected

123

Phytochem Rev



mice from Mengo virus infection (Güttner et al. 1982)

and that its activity increased when combined with

INF-I (quercetin 20 and 10 mg/kg oral ? MuIFN-a/b
500 IU parenteral) (Veckenstedt et al. 1987). In the

same way, quercetin (12.5 mg/kg/day via oral gavage)

protected mice against IV infection (Davis et al. 2008)

since it could prevent the early stage of influenza

infection by inhibiting the two principal antiviral

targets of licensed anti-IAV drugs, HA and NA.

Hence, quercetin prevented IAV (H1N1, H1N1,

H3N2) infection by avoiding virus entry into host

cells through viral HA protein inhibition and the first

stage of viral replication linking the active site of viral

NA (Liu et al. 2016; Wu et al. 2015). In vivo

investigation on infected mice demonstrated indeed

that quercetin exerted a dose-dependent (240, 480, and

960 mg/kg twice daily) viral inhibition rate, while the

improvement of lung index and the survival rate at

960 mg/kg/die was comparable to that induced by

zanamvir at 480 mg/kg/day (Liu et al. 2016). Quer-

cetin was also found to limit the viral replication and

symptoms associated with rhinovirus infection.

Specifically, this flavonoid reduced either positive or

negative strand viral RNA thanks to the lowered

cleavage of eIFG4II and the viral capsid protein VP2

reduction. Thus, quercetin was assumed to prevent the

processing of the initial polypeptide required for viral

RNA polymerase elaboration and eIFG4II cleavage,

blocking all downstream stages of RV replication. It

was also observed that this flavonol increased eIF2a
phosphorylation and, consequently, the host’s innate

immune responses since the host normally activates

this factor to limit viral replication. These hypotheses

were confirmed in vivo since quercetin administration

to mice (0.2 mg of quercetin daily for 1 or 4 days)

prevented not only viral replication but also reduced

RV-induced pro-inflammatory chemokine and cyto-

kine expression and airway hyperresponsiveness

related to viral infection (Ganesan et al. 2012).

Corroborating these data are those from another

in vivo investigation in which quercetin, daily admin-

istrated with diet (0.1% quercetin providing 100 mg/

kg of quercetin) for 10 days, enhanced RV clearance

in infected mouse models with chronic obstructive

pulmonary disease (Farazuddin et al. 2018). Likewise,

the same inhibition in viral replication was demon-

strated for EVA71 in newborn mice (Dai et al. 2019),

while a Phase I Dose Escalation Study conducted on

humans showed the potential application of quercetin

(250 to 5000 mg/day) for chronic HCV infection

treatment (Lu et al. 2016). As well as quercetin, its

derivatives like isorhamnetin, isoquercetin, querce-

tin 3-O-b-D-glucuronide, and quercetin 3-O- a-L-

rhamnoside demonstrated to have anti-influenza

activity in both in vitro and in vivo models by

decreasing viral replication and reducing inflamma-

tion and oxidative stress (Choi et al. 2012; Dayem

et al. 2015; Fan et al. 2011; Kim et al. 2010).

Specifically, isorhamnetin inhibited the first steps of

IV replication by inhibiting NA (Dayem et al. 2015)

and also protected from EVA71 infection (Dai et al.

2019). On the other hand, isoquercetin prevented

ebolavirus infection by inhibiting viral entry into the

host cells, probably affecting the glycoprotein-medi-

ated step (Qiu et al. 2016). The 3-hydroxy derivative

of quercetin, dihydroquercetin, a flavonoid extracted

from Larix sibirica wood, showed antiviral activity

against either non-enveloped virus, like coxsack-

ievirus B4 or enveloped virus, as IAV; however, the

mechanism of action was not discovered (Galochkina

et al. 2016; Trofimova et al. 2015). With a greater

antiviral effect than quercetin, other 3-hydroxyl group

flavonoids 3,20-dihydroxyflavone and 3,40-dihydrox-
yflavone acted, demonstrating the importance of the

hydroxyl group substitution. These two compounds

exerted their anti-influenza effect by inhibiting the HA

and NA activity, as also demonstrated by in vivo

investigation where a reduced lung viral triter was

evidenced after oral administration of 1 mg/kg/day for

5 days to infected mice (Hossain et al. 2014). Other

flavonols with potential activity again IAV infection is

kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-

4H-1-benzopyran-4-one) from several edible plants

(e.g., broccoli, tea, kale, cabbage, endive, beans, leek,

strawberries, tomato, and grapes) and plants or

botanical products generally used in traditional

medicine (e.g., Tilia spp., Ginkgo biloba, Moringa

oleifera, Equisetum spp., Sophora japonica, and

propolis). In particular, kaempferol showed antiviral

activity against peramivir and oseltamivir-sensitive

and resistant influenza viruses both in vitro and

in vivo. These active molecules seemed ineffective

in preventing absorption or invasion but might act by

suppressing the later replication stage (Kai et al.

2014). As previously mentioned, the host cell redox

stage plays a pivotal role in viral replication.

Kaempferol was able to mitigate ROS production

and the formation of MDA, a product of the lipid
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peroxidation breakdown; hence the inhibition of IAV

replication in mice after kaempferol intragastric

administration (15 mg/kg) should be related to the

restoration of the redox state in mice. In addition to the

antioxidant activity, kaempferol attenuated inflamma-

tion and pulmonary oedema in infected mice by down-

regulating TLR4/MyD88-mediated NF-jB and

MAPKs signaling pathway, thereby reducing the

release of pro-inflammatory cytokines like TNF-a,
IL-6, and IL-1b (Zhang et al. 2017a). A suppression of

cell-autonomous immunity was confirmed in another

in vivo study investigating the anti-IAV effect of

kaempferol (100 mg/kg, intragastric administration);

however, in this case, no antiviral activity was

demonstrated since an increase in virus replication

was observed (Dong et al. 2014). Hence further

investigations are needed to confirm the kaempferol

antiviral activity against IAV. This flavonol also

demonstrated an effect against EV71 by interfering

with viral replication and inhibiting the internal

ribosome entry site (IRES) activity leading to a

limitation of viral infection (Dai et al. 2019; Tsai

et al. 2011). This effect resulted in an increase of

survival rate about 88.8% when kampferol was

intraperitoneally administered to infected mice at the

dosage of 50 mg/kg (Dai et al. 2019). An anti-EV71

effect was also demonstrated for O-methylated

flavonols as penduletin and chrysosplenetin, isolated

from Laggera pterodonta (DC.) Sch.Bip. ex Oliv.

leaves (Dai et al. 2019; Zhu et al. 2011). The specific

mechanism of action by which these molecules acted

need further investigation, but preliminary studies

demonstrated that it did not block virus entry nor

inhibited viral RNA replication on Vero cells but

exerted an antivitral activity with an IC50 of

0.17 ± 0.13 and 0.17 ± 0.12 lM for chrysosplenetin

and penduletin, respectively (Zhu et al. 2011). Apart

from EVA71either penduletin or chrysosplenetin had

demonstrated in vitro to be effective inhibitors of a

broad spectrum of other human enteroviruses (EV84,

EV11, CVB3, CVA10, and CVA16) (Zhu et al. 2011).

Flavonols were also investigated for their anti-HSV

activity. Houttuynoid A, extracted from Houttuynia

cordata Thunb., inhibited in vitro viral entry by

blocking the fusion between the viral envelope and the

host plasma membrane (IC50 = 23.50 ± 1.82 lM).

Moreover, houttuynoid A (100 lM mixed with

1.0 9 107 PFU HSV-1/F and added to the broken

mice skin) inhibited HSV-1 infection in the BALB/c

mouse model, reducing the viral loads in the infected

skin tissue (Li et al. 2017). Likewise, myricetin, a

common dietary compound occurring in vegetables,

fruits, nuts, berries, tea, and red wine, blocked the viral

entry through direct interaction with the viral gD

protein expressed on the enveloped, inhibiting adsorp-

tion and membrane fusion. Furthermore, myricetin

also inhibited the EGFR/PI3K/Akt signaling pathway,

which is essential for HSV replication. As a result,

there was an anti-HSV activity of myricetin after the

intraperitoneal administration of 2.5 or 5 mg/kg/day to

infected mice (Li et al. 2020b). Besides this anti-HSV

action, it was observed that myricetin reduced

influenza virus replication in infected mice, but the

mechanism of action needs to be investigated (Yoo

et al. 2013).

Flavanones

Flavanones are another class of flavonoids comprising

� 350 aglycones and 100 glycosylated forms. The

basic 2,3-dihydroflavone structure characterizes them,

but they differ from flavones and flavonols in the

absence of the C2-C3 double bond, the substitution in

C3, and the presence of a chiral atom in C2 (Barreca

et al. 2017). They are widely distributed in nature and

represent intermediates of the flavonoid biosynthetic

pathway. Hesperidin (3,5,7-trihydroxyflavanone-7-

rhamnoglucoside), the glycosidic metabolite of hes-

peretin, is the main dietary flavone glycoside found in

Citrus species and is also known as Vitamin P

(Srinivasan et al. 2019). This specialized metabolite

is known for its anti-inflammatory activity, possibly

also attributable to its antiviral effect against IAV

infection. In fact, hesperidin did not inhibit viral

replication but acted by reducing pro-inflammatory

cytokines via MAPK signaling suppression (Ding

et al. 2018). Specifically, hesperidin enhanced the

expression and activation of P38 and JNK, improving

cell-autonomous immunity. P38 is indeed a critical

protein for the antiviral response since its phosphory-

lation and nucleus translocation was related to many

transcription factor activation like NF-jB, AP1, and
Jun, and STAT1 phosphorylation, known to be

directly involved in the transcription of INF-c (Ding

et al. 2018). This anti-IAV activity was in vivo

corroborated as the hesperidin, intragastric adminis-

tration to infected mice (100 mg/kg/day) and

intraperitoneally injected to infected rats, attenuated
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pulmonary inflammation and pathology by reducing

pro-inflammatory cytokines like TNF-a, IFN-a, and
IL-6 (Ding et al. 2018; Dong et al. 2014). Instead of

hesperidin, another flavanone from Citrus species,

prunin, appeared to interfere directly with the repli-

cation of other enveloped or non-enveloped viruses by

disrupting viral protein and RNA synthesis. In either

EV71 or HCV, prunin inhibited the viruses’ internal

ribosome entry site, which is known to initiate viral

RNA translation (Gunaseelan and Wong 2019). In

fact, several RNA viruses with positive-strand

uncapped genomes use internal ribosome entry site

elements to control viral protein synthesis (Martinez-

Salas et al. 2018). Prunin anti-EVA71 effect was also

demonstrated in vivo (1, 3, and 10 mg/kg/day,

intraperitoneally administrated). EVA71 infection

provokes the accumulation of neutrophils and macro-

phages and the secretion of proinflammatory cytokines

with muscle tissue destruction. Due to the reduced

viral antigen distribution, these muscle tissue damages

seemed restricted when prunin was administered

(Gunaseelan and Wong 2019). Pinostrobin, a natural

monohydroxyflavanone deriving from the leaves of

Cajanus cajan (L.) Millsp. (pigeon pea), also exerted

its antiviral activity by directly acting on the virus as

demonstrated in vitro (EC50 = 22.71 ± 1.72 lg/mL)

and in vivo on infected mice (20 and 50 mg/kg/day via

oral administration). In this context, important was its

anti-HSV activity by preventing virus entering inside

the host cell. Pinostrobin targeted the surface of the

viral lipid envelope, thereby causing a gradual leakage

and breakage of the envelope and HSV inactivation. In

this way, virions were unable to infect the host cells

(Wu et al. 2011b). The lipid envelope contains several

glycoproteins (e.g. gB, gC, gD, etc.) consisting of

polypeptides with several proton donors and acceptors

and which are necessary for the entry of HSV-1 into

the healthy host cells. Looking at the chemical

structure of pinostrobin it is possible to observe the

presence of methoxyl, hydroxyl, and carbonyl sub-

stituents capable of forming hydrogen bonds with the

glycoproteins donors and acceptors protons groups.

Thus, the hydrogen bonds formed between pinostrobin

and virions glycoproteins might determine the desqua-

mation and disruption of the viral envelope (Wu et al.

2011b).

Isoflavones

Isoflavones are a subclass of flavonoids mainly

produced by the members of Leguminosae; they are

characterized by the 3-phenylchromen-4-one back-

bone principally modified by prenylated and/or gly-

cosides derivatives and O-substituents. In plants, the

greater isoflavones concentration has been found in

soy (Glycine max L.), kudzu, and red clover (Trifolium

pratense). Like the other flavonoids, isoflavones’

antiviral targets were virus envelop glycoproteins,

leading to the prevention of viral binding end entry and

viral replication, with the consequent inhibition of

viral protein translation. An example of abundant

isoflavone mainly found in soybeans and soy products

is genistein, also known as prunetol, which was

reported to act as a general tyrosine kinase inhibitor

and reported to inhibit viral infection in vitro by

preventing viral entry. Further, genistein was evi-

denced to prevent new influenza virions from being

released and spread by inhibiting NA active sites

either in vivo (0.4 g/kg/day, orally administered) or

in vitro (IC50 = 3058.8 ± 218.9 and

2729.6 ± 275.1 lM for A/NWS/33 (H1N1) and

A/chicken/Korea/MS96/96 (H9N2), respectively)

(Wei et al. 2015). Soy products also contain for-

mononetin, which demonstrated in vivo antiviral

activity after intraperitoneal injection (10 mg/kg/day)

to EV71- infected mice infected with EV71 (Dai et al.

2019). In fact in vitro study showed that this active

molecule inhibited EV71 probably through the down-

regulation of inflammatory pathways like ERK, p38,

JNK, and MAPK, which were upregulated during

infection and played a pivotal role in helping viral

reproduction (Wang et al. 2015). Another isoflavone,

the calycosin 7-O-b-D-glucopyranoside, isolated

from A. membranaceus var. mongholicus (Bunge)

P.K.Hsiao, showed promising protection against

CVB3-causing myocarditis. It was indeed in vivo

demonstrated that the compound (24 mg/kg/day,

orally administered) prevented viral replication in

the heart and reduced inflammation, resulting in heart

protection and increasing infected mice’s survival rate

(Zhu et al. 2009).

Chalcones

Chalcones (1,3-diphenyl-2-propene-1-one) form

another flavonoid family class structurally
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characterized by two aromatic rings, which should be

polyhydroxylated, linked through three carbon a,b-
unsaturated keton system. To date, chalcones have not

been extensively investigated for their potential

application as antiviral molecules; however, the few

literature data indicated that their antiviral activity

depends on the presence of a specific substituent. For

instance, the electron-donating group presence in the

p-position of the aromatic group (CH3, NMe2, and

OCH3) showed an important activity against HSV

infection (Marinov et al. 2020). On the other hand, the

prenylated chalcone xanthohumol (30-(3,3-dimethy-

lallyl)-20,40,4-trihydroxy-60-methoxychalcone), from

the female inflorescences of Humulus lupulus L. plant

(hops), demonstrated a selective inhibition against

HIV-1 infection probably by blocking the reverse

transcriptase and p24 antigen (Wang et al. 2004).

Contrarily, no effective anti-HCV activity was demon-

strated; however, its oral administration (1 mL/100 g

body weight, divided into 3 single daily doses) to

infected Tupaias reduced hepatic inflammation, fibro-

sis, and steatosis by lowering oxidative reaction,

regulating apoptosis, and suppressing hepatic stellate

cells activity (Yang et al. 2013a).

Catechins

Other members of the polyphenol group are catechins

structurally characterized by the basic flavan 3-ol

nucleus. Structural-activity relationships have demon-

strated that the 5’-OH and 3-galloyl groups are

essential for their antiviral activity against a broad

range of viruses. Epigallocatechin 3-gallate is the

main catechin found in green tea (Camelia sinensis)

and is known to be promising in treating and/or

preventing infection of DNA, like HBV, and RNA, as

HCV, CVB3, and IAV viruses. Specifically, this

compound reported robust anti-HBV activity in vivo

(50 mg/kg two times a day for 4 weeks) by reducing

the relaxed circular DNA (rcDNA) and the HBsAg

mRNA (Lai et al. 2018). In contrast, activity against

HCV is uncertain; in vitro experiments demonstrated

that epigallocatechin 3-gallate might prevent viral

attachment to the host cells by interacting with the

envelope glycoprotein; at 25 lg/mL of the compound,

almost 100% of viral inhibition. However, monother-

apy (100 mg/kg twice daily by oral gavage) failed to

protect mice from HCV infection, probably due to its

lower oral bioavailability (O’Shea et al. 2016).

Promising protection against CVB3-induced

myocarditis was instead highlighted in both in vitro

and in vivo studies. ECCG significantly down-regu-

lated CVB3 replication by inhibiting protein expres-

sion levels and the adenovirus receptor, known to be

themain viral receptor involved inmyocytes infection.

However, epigallocatechin 3-gallate failed to reduce

the expression of pro-inflammatory cytokines (TNF-a,
MCP-1, and IL-6) induced by the viral infection in

infected mice (10 mg/kg/day via oral administration)

(He et al. 2017). This inability of epigallocatechin

3-gallate to reduce inflammation is inconsistent with

studies investigating its potential anti-IAV infection

in vivo (10, 20, and 40 mg/kg/day via oral adminis-

tration) and in vitro (ED50 value was

8.71 ± 1.11 nmol/L). In this case, indeed, the natural

compound exerted its antiviral action by interrupting

the early phase of the viral replication cycle and down-

regulating the TLR/NF-jB signaling pathway, thereby

reducing the levels of inflammatory cytokines and

oxidative stress (Ling et al. 2012; Xu et al. 2017).

Another catechin, gallocatechin 7-gallate, from

Pithecellobium clypearia (Jack) Benth. leaves and

twigs, also showed an important antiviral effect against

IAV-infected mice (30 mg/kg/day, intravenously

administrated) by inhibiting the Host-cdc2-like kinase

1, known to be responsible for the phosphorylation of

the arginine- and serine-rich factors. These last include

SRp20, 9G8, SC35, and SF2/ASF involved in regulat-

ing the spliceosome assembly early events, which are

essential for mRNA maturation. It was demonstrated

that Host-cdc2-like kinase 1 inhibition could inhibit

viral replication by more than two orders of magni-

tudes through the M2 mRNA-impaired splicing. Gal-

locatechin 7-gallate, by inhibiting Host-cdc2-like

kinase 1, down-regulated SF2/ASF and SC35 phos-

phorylation leading to the impaired synthesis of the

IAV proteins M2 and NP. Furthermore, as well as

epigallocatechin 3-gallate, gallocatechin 7-gallate also

reduced the expression of pro-inflammatory cytokines

IL-6, TNF-a, and IL-1b (Li et al. 2018).

Phenylpropanoids

Phenylpropanoids, plant phenolic acids characterized

by a C6-C3 carbon skeleton, are derived mainly from

cinnamic acid. Cinnamic acid owes its name to

Cinnamomum, a taxonomic genus belonging to the

Lauraceae family, cinnamon, camphor, and related
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plants.Chlorogenic acid, the ester of caffeic acid with

quinic acid, has numerous biological properties,

including antiviral activity. Influenza A H1N1-in-

fected mice were treated with different doses of

chlorogenic acid, including 240, 480, and 960 mg/

kg/day, through oral administration, and it was seen

that chlorogenic acid improved survival rates from

40% (240 mg/kg/day) to 56% (960 mg/kg/day) (Liu

et al. 2016). However, the mechanism of action of

chlorogenic acid to inhibit viral infections need to be

further explored. Another phenylpropanoid derivative

isolated from several dicotyledons, acteoside, also

known as verbascoside, acted through a different

mechanism of action against IAV. Its antiviral activity

was found to be highly related to the increase in IFN-c
production in mouse T cells dose-dependently (20, 40,

80, and 160 lM), probably thanks to the activation of

T-bet and ERK phosphorylation cascade. In regulating

IFN-c gene expression and secretion are involved

several signaling factors, such as the transcription

factor T-bet and the activation of the MAPK signaling

pathway. This last is responsible for ERK activation

resulting in a phosphorylation cascade ending with the

IFN-c release. On the other hand, T-bet is a transcrip-

tion factor belonging to the T-box family member, is

expressed in T cells like CD4? and CD8 ? , and was

found to be essential for obtaining the maximal

transcription of IFN-c. Acteoside increased IFN-c
levels by a double mechanism, including the activa-

tion of T-bet and the increase in the phosphorylation of

ERK1/2, probably by activating MAPK. Differently

from cytokine stimulation, which normally leads to

IFN-c release and cytotoxicity, selective activation of

IFN-c production of CD4? and CD8 ? cells by the

acteoside provides a good opportunity to differentiate

between the two main functions of CD3 cells,

involving cytokine generation and cytotoxicity, par-

ticularly when cytotoxicity can cause normal tissue

damage (Song et al. 2016). Acteoside has also been

found to have a protective effect against RSV infection

since it can reduce RSV replication in vivo (80 mg/kg,

intraperitoneally administrated), even if the exact

mechanism of action needs to be investigated (Chathu-

ranga et al. 2019). Another phenylpropanoid with

antiviral activity is cinnamaldehyde, which demon-

strated both in vivo (250 lg/mouse/day through nasal

inoculation) and in vitro (20–200 lM) anti-influenza

activity thanks to its capacity to reduce viral protein

synthesis at the post-transcriptional level (Hayashi

et al. 2007). The effect of cinnamaldehyde on CVB3

was instead unclear, probably for its rapid conversion

to cinnamic acid. In vitro experiments reported that

cinnamic acid (100–1000 lM) but not cinnamalde-

hyde (100–1000 lM) reduced the viral titer in the

CVB3-infected myocardial cells with low cytotoxic-

ity. On the contrary, cinnamaldehyde but not cinnamic

acid (30 mg/kg, intraperitoneally) reduced inflamma-

tion and oxidative stress by inhibiting the TLR4-NF-

jB signaling pathway in CVB3-induced myocarditis

in mice (Ding et al. 2010). Cinnamic acid was also

reported to block Zika virus replication, both in vivo

(75 or 150 mg/kg) and in vitro, by inhibiting the RNA-

dependent RNA polymerase (RdRp) activity (Chen

et al. 2021). With promising antiviral activity, there is

also rosmarinic acid, a phenolic compound found in

various Lamiaceae plants, which has been demon-

strated to be active against EV71 and Japanese

encephalitis virus (JEV). The compound (100 mg/

kg) inhibited the early phases of viral infection, like

EV71 attachment and entry into the host cells,

targeting several cellular receptors such as the scav-

enger receptor class B member 2 (SCARB2), P-se-

lectin glycoprotein ligand-1 (PSGLI), and heparan

sulfate glycosaminoglycan (Hsieh et al. 2020). Fur-

thermore, rosmarinic acid (20 mg/kg, body weight)

might also interact with EV71 proteins like VP1

protein, with which SCARB2 normally interact to start

the EV71 protein at low pH condition (Lin et al. 2019).

Regarding JEV, the compound administration to

infected mice (25 mg/kg, intraperitoneally) reduced

brain viral replication and the secondary inflammation

related to microglial activation. However, the mech-

anism of action underlying this activity needs to be

understood (Swarup et al. 2007).

Lignans

Lignans are a naturally occurring large group of

compounds characterized by a basic scaffold formed

by two or more phenylpropanoid monomers like

cinnamic acid, propenyl benzene, allyl benzene, and

cinnamyl alcohol. When the monomers’ molecular

linkage is formed between position b-b’, the com-

pounds are known as ‘‘classical lignans’’, while the

others that do not contain this linkage are designed as

‘‘neolignans’’. Several lignans have been revealed to

have interesting antiviral properties by inhibiting, for
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example, the transcriptase, integrase, and topoiso-

merase leading to the inhibition of viral replication.

Classical lignans

Phillyrin, isolated from the fruits of Forsythiae

suspensa (Thunb.) Vahl. (Oleaceae), has been

reported to possess antiviral activity against IAV

infection (A/FM/1/47) in vivo (10 or 20 mg/kg/day,

intraperitoneally administrated), decreasing the

expression of influenza hemagglutinin (HA) protein

and the IL-6 levels in the serum of infected mice.

Thus, phillyrin may protect mice against IAV infec-

tion by inhibiting viral replication and reducing viral-

induced inflammation (Qu et al. 2016). Similarly,

arctigenin and its glycoside arctiin, a phenyl-

propanoid dibenzylbutyrolactone lignan extracted

from the fruits of Arctium lappa L. (Asteraceae),

acted at the first stage of IAV infection (A/NWS/33,

H1N1), inhibiting viral replication and increasing the

immune response both in vivo and in vitro even if the

specific mechanism of action needs further investiga-

tions. In mice, arctiin was immediately metabolized

into arctigenin after administration and remained in

the blood for 12 h, suggesting that arctigenin is the

active metabolite responsible for the antiviral activity.

It is possible to think that arctigenin interfered with

early intracellular stages after virus penetration into

the host cells and with the release of progeny viruses as

well; the coadministration of arctiin (1 mg/day) and

oseltamivir (0.02 or 0.05 mg/day) increased its anti-

IAV activity (Hayashi et al. 2010). Arctigenin also

demonstrated antiviral activity against JEV infection

since its intraperitoneal administration (10 mg/kg)

significantly reduces brain viral load and replication,

inflammation, and oxidative stress responsible for

neuronal death (Swarup et al. 2008). Diphyllin is a

natural arylnaphthalene lignan belonging to the vac-

uolar ATPase (V-ATPase) inhibitors class that can

intercept virus entry into host cells. V-ATPases are

eukaryotic cells’ ubiquitous proton pumps found in the

endomembrane system which are responsible for the

endosomal acidification essential for virus entry.

Hence, the inhibition of V-ATPase prevents viral

infection. However, diphyllin is characterized by poor

solubility, which limits its application in antiviral

treatment; for this reason, it was encapsulated in

nanoparticles of poly(ethylene glycol)-block-

poly(lactide-coglycolide) (PEG-PLGA) and

intravenously injected to mice (diphyllin nanoparti-

cles contained 10 lg of diphyllin) for 1 or 3 days.

Under this formulation it was seen an increase of

diphyllin anti-IAV activity (Hu et al. 2018). A

derivative of diphyllin, the 6-deoxyglucose-diphyllin,

isolated from Justicia gendarussa Burm.f (Acan-

thaceae), exhibited antiviral activity against Zika virus

(ZIKV) both in vivo and in vitro. As for diphyllin,

mechanistic studies showed that 6-deoxyglucose-

diphyllin blocked ZIKV infection by inhibiting the

acidification of endosomal/lysosomal compartments

in target cells, which is critical for entering viral

particles into the target cells (Martinez-Lopez et al.

2019). Another lignan schisandrin A, isolated from

Schisandra chinensis (Turcz.) Baill. (Schisandraceae),

was reported as a potential antiviral agent against

DENV in vitro (EC50 = 28.1 ± 0.42 lM on Huh-7

cells) and in vivo (5 and 10 mg/kg). Schisandrin A

inhibited DENV RNA replication and protein synthe-

sis and increased the production of IFN-a protein and

STAT1/2 phosphorylation, which are involved in IFN-

mediated antiviral responses, suggesting that schisan-

drin A could exert its virucidal activity by inducing the

antiviral IFN response (Yu et al. 2017b).

Neolignans

Aswell asmethyl helicterate, from theMeliaceae family

comes another anti-HV promising molecule, silvestrol,

a neolignan characterized by cyclopenta[b]benzofuran

moiety isolated from Aglaia foveolata Pannell. This

compound inhibited HEV viral replication in different

HEV experimental model systems like humanized

HEV-infected mice at 0.3 mg/kg and acted additively

to ribavirin (RBV). Specifically, silvestrol would target

the host factor eIF4A during cap-dependent translation

initiation. In this way, silvestrol blocked the mRNA

translation machinery, which is known to be formed by

eIF4A, eIF4G, and eIF4E. In fact, it was demonstrated

that eIF4E-binding protein 1 (4E-BP1) was implied in

the translation complex’s negative regulation, corrobo-

rating the importance of eIF4A and eIF4E in sustaining

HEV replication (Todt et al. 2018).

Flavolignans

Silymarin is a flavolignans mixture extracted from the

milk thistle of Silybum marianum (L.) Gaertner

(Asteraceae), used since ancient times in the therapy
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of liver diseases, and composed of five major

compounds: silybinin, isosilybinin, silychristin, sily-

dianin, and taxifoline. The major active component of

silymarin consists of the two stereoisomers silybin A

and silybin B (ratio 1:1), also known as silibinin.

Silymarin has extensively known for its hepatopro-

tective effect attributable to its anti-inflammatory,

antioxidant, and immunomodulatory effects, which

led this molecule to be a candidate for the treatment of

viral hepatitis. In fact, the administration of silymarin

to 67 patients with acute HAV, HCV, HBV,

cytomegalovirus, enteric, and dengue virus decreased

ALT serum levels, demonstrating that silymarin was

effective in patients with acute hepatitis (Jaffri et al.

2007). However, despite its good potential therapeu-

tical activity, silymarin has poor solubility, affecting

its bioavailability in vivo. Thus, the hydrophilized

silibinin, Legalon� SIL was developed by the phar-

maceutical company Rottapharm Madaus (Monza,

Italy) to treat hepatic intoxication by Amanita phal-

loides mushrooms and also for the prevention of

recurrent hepatitis C in liver transplant patients (Guedj

et al. 2012). Several works demonstrated the anti-HVC

activity of this drug, but it is important to consider

possible mutations that make resistant HCV to SIL.

The analysis of viral genomes revealed that SIL

targeted the interaction between NS4B and NS3/4A,

which is responsible for membrane alteration and the

formation of functional HCV replication sites. These

results suggested that the antiviral activity of SIL

could be partially mediated by inhibiting the HCV

replication site formation, interfering whit the inter-

action between NS4B and NS3/4A. A mutation in the

C-terminal region of NS4B significantly reduced HCV

sensitivity to Legalon� SIL, conferring resistance to

the treatment (Esser-Nobis et al. 2013). In a study on

HCV-infected uPA-SCID chimeric mice with human-

ized livers, SIL was administered for 14 days (61.5,

265, and 469 mg/kg, intravenous administration),

demonstrating that this molecule might block viral

production and increase anti-inflammatory and

antiproliferative gene expression in human hepato-

cytes of treated mice (Deb Roy et al. 2016). These

effects were further validated by clinical trial since

Legalon� SIL administration (10, 15, or 20 mg/

kg/day) resulted in a progressive HCV-RNA reduction

and a lack of viral breakthrough without adverse

effects during the period of iv- Legalon� SIL

monotherapy, even if monotherapy did not avoid

reinfection (Bárcena et al. 2013; Guedj et al. 2012).

This last result was in contrast with that obtained by a

single-centre, prospective, randomized, parallel-

group, double-blind, placebo-controlled, phase 2 trial

where, after the intravenous treatment with Legalon�

SIL (20 mg/kg/day), viral load decreased 16 days

after the end of treatment and was similar to baseline

(Rendina et al. 2014). The arrest of HCV infection

shown after Legalon� SIL intravenous administration

(20 mg/kg/day) is associated whit a decrease in the

severity of liver disease (Canini et al. 2015). Further,

short-term and high-dose silibinin infusion

(1400 mg/day for two consecutive days) determined

complete viral suppression in patients with minimal

residual viremia during standard therapy with inter-

feron and RBV (Biermer et al. 2012). The antiviral

activity of Legalon� SIL was also associated with its

immunomodulatory effects, as demonstrated in 12

liver transplant patients with recurrence of HCV. In

this case, a decrease in HCV viral load was observed in

association with changes in the levels of pDC and

mDC represented by an increase of pDC/mDC ratio,

while no effects were observed in Treg frequency or

programmed death (PD)-1 expression by Treg,

demonstrating that SIL exerted antiviral activity

through its immunomodulatory effects, but did not

affect PD-1/PD-L1 pathway involved in the persis-

tence of HCV infection. However, several correlations

between DC/Treg markers and clinical parameters

were detected, suggesting that Legalon� SIL (20 mg/

kg/day, intravenous administrated for 14 days) could

ameliorate the clinical condition of liver transplant

patients (Castellaneta et al. 2016). The fact that daily

intravenous silibinin was safe and showed significant

antiviral activity could suggest its longer treatment in

clinical trials to prevent hepatitis C recurrence,

especially in patients with liver transplants (Mariño

et al. 2013). The efficacy of Legalon� SIL against

HCV in patients non-responders to a full dose of

peginterferon/RBV (PegIFN/RBV) combination ther-

apy was also demonstrated. In this case it was seen that

intravenous silibinin therapy decreased the viral load

in a dose-dependent manner, but its effect did not

improve the response to interferon because the

antiviral activity was not maintained after the end of

the infusion period. However, Legalon� SIL was well

tolerated, with no serious adverse effects observed,

confirming it as a safe antiviral agent against HCV in

non-responders (Ferenci et al. 2008). These results
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agree with that of another clinical trial confirming that

intravenous Legalon� SIL could be considered a

‘‘rescue treatment’’ for patients on treatment and non-

responding to standard therapy (Rutter et al. 2011).

Furthermore, combination therapy of pegylated inter-

feron RBV and silibinin in non-responder and post-

liver transplantation patients reduced the viral load

that became undetectable in week 6, resulting in a

sustained virological response 24 weeks after the end

of therapy. Hence, combination therapy with silibinin,

pegIFN, and RBV (20 mg/kg/day, 135 lg/week, and
600 mg/day, respectively), might be effective for

treating non-responder patients reinfected with HCV

and liver transplanted (Knapstein et al. 2014). Intra-

venous Legalon� SIL was also demonstrated to reduce

viral load and increase CD4? cell counts in HIV/HCV

co-infected patients non-responding to standard dou-

ble therapy with peginterferona-2a and RBV (Payer

et al. 2010). These results were confirmed in two pilot

studies where intravenous silibinin was administered

to HIV/HCV co-infected patients with advanced liver

fibrosis and non-responder to peginterferon-RBV

therapy. In fact, a lead-in therapy with silibinin

reduced HCV RNA and 63% of patients showed a

sustained virological response at week 12 after the end

of treatment (Braun et al. 2015). Despite the observed

effectiveness of intravenous Legalon� SIL, an oral

formulation of silibinin encapsulated in nanoparticles

(\ 200 nm) was developed to enhance its solubility

and bioavailability. This formulation (50 lM) exhib-

ited in vitro anti HCV activity in human hepatocytes,

especially during the virus’s intercellular spread, and a

potent antioxidant activity that could eliminate HCV-

induced oxidative stress. Furthermore, oral adminis-

tration of silibinin nanoparticles in rodents (5 or

10 mg/kg) produced no apparent adverse effects but

improved the bioavailability and liver distribution

compared to free silibinin, supporting the potential of

these nanoparticles (Liu et al. 2017). Another formu-

lation is that of silybin phospholipids and vitamin E

complex (SPV complex, 47 mg silybin and 15 mg

vitamin E), which demonstrated hepatoprotective and

anti-inflammatory effects in patients with chronic

HCV infection since an improvement in viral load and

hepatic indices and a persistent reduction of serum

ALT, AST, and IL-6 levels was observed (Falasca

et al. 2008). It is also possible to administrate SPV

complex (silybin 94 mg ? vitamin E 30 mg ? phos-

pholipids 194 mg in pills for 12 months) in HCV

patients treated with pegIFN and RBV standard

therapy. Results showed that supplementation of

silybin not only increased the effect of pegIFN and

RBV but also improved the quality of life of HCV

patients, ameliorating the workability and reducing

depression and anxiety, compared to no silybin treated

group (Malaguarnera et al. 2016).

Apart from Legalon� SIL, also silymarin was

investigated for its anti-HCV activity in clinical

studies. In particular, silymarin administration (420

or 1050 mg/day) to patients with chronic HCV and

decompensated cirrhosis resulted in reduced ALT and

AST levels without adverse effects, even at the highest

dose (Fathalah et al. 2017). This molecule was also

active in patients with HCV non-responding to prior

peginterferon/RBV since silymarin administration

was associated with a reduced progression of hepatic

fibrosis to cirrhosis (Freedman et al. 2011). However,

pharmacokinetics studies demonstrate that due to low

bioavailability, oral doses of silymarin higher than

2.1 g/day doses or longer treatment may be necessary

to achieve the concentrations for antiviral effects since

doses below 700 mg did not show a significant

reduction of serum transaminase and HCV RNA titer

(Hawke et al. 2010). In fact, the administration of 3

capsules daily of silymarin (125 mg) did not affect

HCV RNA titers, serum ALT, and serum and ultra-

sound markers for hepatic fibrosis, suggesting further

studies with a longer treatment period or higher dose

(Tanamly et al. 2004).

Tannins

Tannins are polyphenolic molecules of natural origin

normally found in all plant parts (stems, roots, leaves,

seeds, and fruits), which explains their presence in

numerous natural sources. They are known for many

physiological activities related to their ability to bind

proteins, and thanks to that, tannins exert antiviral

activity against a broad spectrum of viruses. Chebu-

lagic acid, geraniin, and punicalagin are hydrolyz-

able tannins that could inhibit the EV71 either in vivo

or in vitro, probably by counteracting the viral

absorption/penetration since a reduction in EV71

replication and the viral cytopathic effect was

observed (Yang et al. 2012b, c, 2013b). Further, the

intranasal administration of both chebulagic acid and

punicalagin (50 mg/kg of each) to RSV-infected mice

was demonstrated to reduce viral lung loads and
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alleviate viral-induced lung lesions by suppressing

COX-2, iNOS, and PGE2 protein expressions and

down-regulating MAPK and IKK-NF-jB signaling

pathway (Xie et al. 2016). Geraniin was instead

investigated for its anti-DENV activity through

in vitro and in vivo models about its ability to bind

viral protein. In fact, when geraniin was intravenously

administrated to infected mice (131.30 lM prepared

in 100 ll PBS), it rapidly bound the circulating

DENV-2 viral protein, thereby preventing the infec-

tion and the virus-induced splenomegaly (Abdul

Ahmad et al. 2019). Specifically, using in vitro models

(IC50 = 1.75 lM), it was seen that geraniin directly

linked the domain III region of viral E protein with

consequent inhibition of DENV viral entry and

replication (Abdul Ahmad et al. 2017). Another

tannin, eugeniin, showed interesting anti-HSV-1

related to its capacity to inhibit the HSV-1 DNA

polymerase activity non-competitively in the vicinity

of the phosphonoacetic acid (a licensed drug for

treating HSV1 infection) binding site, leading to the

prevention of viral replication. This antiviral activity

was confirmed by the virus yield reduction in infected

mice’s skin and brain, thus ameliorating herpetic

symptoms (6 or 50 mg/kg of eugeniin, administrated

orally or intraperitoneally) (Kurokawa et al. 2001).

With a different mechanism of action, acted corilagin,

a hydrolyzable tannin able to ameliorate brain inflam-

matory impairments caused by HSV1 in infected mice

(0.4 mg/each mouse, administered intragastrically).

Specifically, corilagin acted by inhibiting the TIRAP/

MyD88-TRAF6 signaling pathway, a molecular pat-

tern responsible for initiating inflammation and innate

immune response and which usually begins after the

activation of TLR2. Inflammation was further reduced

by inhibiting NEMO, P38, p-P38, NF-jB, TNF-a, and
IL-6 expression, thus reducing the brain-inflammatory

lesions related to HSV1-induced encephalitis (Guo

et al. 2015). Corilagin was also active against HCV, as

demonstrated in infected chimeric mice (1 mM/day,

administrated orally). It might act by inhibiting HCV

replication kay enzymes like NS3 protease and NS5B

RNA-dependent-RNA-polymerase and suppressing

mRNA levels of NOX4 and TGF-b with a consequent

reduction of oxidative stress (Reddy et al. 2018). As

evidenced by dietary supplements to HBeAg-Trans-

genic mice with chronic HBV infection, protection

against viral hepatitis was also provided by ellagic

acid (5 mg/kg body weight), a natural phenolic

molecule contained and released by ellagitannins.

Although the function of secretory HBeAg in the viral

life cycle is neither known nor necessary for infection

or replication processes, host immune tolerance

induced by it represents a viral strategy to ensure

HBV infection. Ellagic acid intake resulted in reduced

HBeAg levels, recovery of T/B cell response, IgG

antibody production, cytokine release, and cytotoxic

T-lymphocyte response, demonstrating that it should

be used as a medicinal agent for HBV carriers (Kang

et al. 2006). Thanks to its immunomodulatory and

antioxidant properties, Ellagic acid also protects

against IV infection when combined with oseltamivir

and isoprinoside (Pavlova et al. 2018). Finally,

phyllaemblicin B, the primary ellagitannin compound

found in Phyllanthus emblica L., demonstrated an

antiviral effect against myocarditis induced by CVB3

by decreasing the viral titer, apoptosis, and inflamma-

tion both in vivo (12 mg/kg/day, intravenous admin-

istration) and in vitro (IC50 = 7.75 ± 0.15 lg/mL)

(Wang et al. 2009).

Alkaloids

Alkaloids are molecules of natural origin containing

hydrogen, carbon, oxygen, and nitrogen and generally

exist as small nitrogenous compounds in about 20% of

plant species. These natural active metabolites have

been demonstrated to interact whit several targets

making them candidates for exerting antiviral activity.

Alkaloids have indeed shown to possess antioxidant

and anti-inflammatory activity and the ability to

inhibit DNA and RNA synthesis, determining a viral

replication blockage. Epigoitrin, a natural alkaloid

isolated from Isatis tinctoria L. (Brassicaceae), pro-

tected against IAV infection in investigations employ-

ing in vitro and in vivo stress-induced models (88 or

176 mg/kg/day, orally administered to infected mice).

Differently from the natural active molecules seen so

far, epigoitrin reduced IV-susceptibility via mitochon-

drial antiviral signaling since it might reduce mito-

fusin-2 (MFN2) expression determining an increase in

the mitochondria antiviral signaling expression and

then an enhancement of IFN-b and interferon-in-

ducible transmembrane 3 (IFITM3) production.

Therefore, epigoitrin acted by maintaining the antivi-

ral signaling of mitochondria antiviral signaling,

generally suppressed under restraint stress by MFN2,

ensuring INF-b release and so reducing viral
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replication (Luo et al. 2019). Moreover, it was seen

that epigoitrin existed as a stereometric mixture of an

equal amount of epigoitrin of (R)–goitrin, and goitrin

or (S)–goitrin, where the S enantiomer claimed a

greater activity than the R-enantiomer (Nie et al.

2020). Likewise, indirubin, a bis indole alkaloid from

Isatis tinctoria L. (Brassicaceae), significantly

restored MAVS expression and promoted IRF3 phos-

phorylation, thereby increasing IFN-b production both
in vitro and in vivo (2.5 or 5 mg/kg/day, orally

administered to infected mice). Type I IFNs are

involved in stimulating the expression of ISGs genes

which play an essential role in contrasting viral

infection; an example of ISG is IFITM3, involved in

restricting IAV replication by blocking the fusion

between virus and host cell membrane. Indirubicin

was demonstrated to improve not only IFN-b by

MAVS activation but also IFITM3 protein expression,

which normally decreases during IAV infection.

Furthermore, this alkaloid down-regulated the expres-

sion of pro-inflammatory cytokines (TNF-a, IL-1b,
and IL-6) and up-regulated the production of anti-

inflammatory mediators like IL-10 leading to the

reduction of IAV-induced inflammation. Thus, indiru-

bin exerted its anti-IAV activity by decreasing the

susceptibility to IAV virus and pro-inflammatory

cytokines levels and maintaining the mitochondria

function and morphology, ensuring IFN-b production

controlled by mitochondria antiviral signaling (Jie

et al. 2017). Indirubin also showed a virucidal effect

against JEV infection, even if the effective mechanism

of action needs to be understood (Chang et al. 2012).

Protection against IAV infection was also evidenced

for homonojirimycin, from Commelina communis L.

(Commelinaceae), which was found to protect mice

(1 mg/kg two times daily, orally administered) from

infection and have anti-inflammatory activity by

inhibiting IL-6 and TNF-a and up-regulating IFN-c
and IL-10 expression (Zhang et al. 2013). Similarly,

reduced IAV-induced inflammation and improved

pulmonary inflammation and histopathological

changes were seen for oxymatrine, a quinolizidine

alkaloid obtained from Sophora (Fabaceae) genus.

The oxymatrine administration to IAV-infected mice

(60 or 120 mg/kg/day by oral gavage) suppressed

IAV-induced activations of TLR4, p38 MAPK, and

NF-jB pathways (Dai et al. 2018a). Likewise,

oxymatrine inhibited viral replication and regulated

the release of cytokine involved in the host defence

mechanism like IFN-c, leading to a lowered inflam-

mation in the heart and protection of mice fromCVB3-

induced myocarditis (3.125, 6.25, 12.5, and 25 mg/

kg/day, intraperitoneal injection) (Jiang et al. 2017).

However, the most important antiviral activity

claimed for oxymatrine is against HBV since it is

clinically used to treat chronic viral hepatitis B in

China (Chen et al. 2001). In vitro and in vivo

investigation demonstrated that oxymatrine inhibited

HBV DNA replication and determined a reduction of

HbsAg and HbeAg by stimulating innate immunity to

increase the production and release of IFN-c in

CD4?T cells (Chen et al. 2001; Lu et al. 2004; Sang

et al. 2017). Specifically, treatment with oxymatrine

(200 mg/kg/day, intraperitoneal injection) triggered a

modification of the immune defence against hepatitis

B infection through an up-regulation of Th1 cytokines

(IFN-c and IL-6) and downregulation of Th2 cytoki-

nes (IL-4 and IL-10), which determined an improve-

ment in HBV inhibitory activity (Dong et al. 2002).

The anti-HBV of oxymatrine was also demonstrated in

clinical studies since this alkaloid abrogated HBV

DNA and HbAg levels by down-regulating HBV-

specific cytotoxic T lymphocyte (CTL) surface pro-

grammed death receptor-1 (PD-1) expression and

increasing HBV-specific CTL levels (Gu et al. 2012;

Lu et al. 2003). These effects resulted in a reduction of

hepatic fibrosis and inflammation, as evidenced in a

randomized, double-blind, placebo-controlled, multi-

center clinical study (capsules of 300 mg, 3 times a

day), where a decreased level of hepatic fibrosis serum

markers, such as hyaluronic acid and type III procol-

lagenic peptide (P III P), was seen (Mao et al. 2004).

Moreover, oxymatrine was effective in reducing HBV

DNA and HBeAg levels in chronic hepatitis B patients

(0.2 g/day) resistant to lamivudine and, if used in

combination with lamivudine (lamivudine

100 mg/day ? oxymatrine 0.2 g/day), reduced the

incidence of lamivudine resistance after one year of

treatment (Wang et al. 2011). The modulation of

innate immunity also characterized the anti-EV71

activity. It was indeed demonstrated that oxymatrine

and five other quinazoline alkaloids,matrine, sophor-

amine, sophocarpine, sophoridine, and oxysopho-

carpine inhibited EV71 replication by increasing the

levels of T cells, such as CD3 ? , CD4? , and

CD8 ? (Yang et al. 2015, 2012b). Among them,

oxysophocarpine exerted the greatest activity. In fact,

its administration (7.5, 15, and 30 mg/kg) exhibited an
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increase in the survival time of infected mice, and, at a

dose of 15 mg/kg/day, also inhibited the virus repli-

cation in mice muscles, suggesting the possible

employment of oxysophocarpine to control fatal

EV71 outbreaks (Yang et al. 2015). Harmine, a b-
carboline alkaloid isolated from Peganum harmala L.

(Nitrariaceae), is another alkaloid with potential anti

EV71 activity. The mechanism of action by which this

compound acted is not well documented, but it seemed

that it might repress EV71 replication in mice

(12.5 lg/mL/day, intraperitoneal injection) by inhibit-

ing the NF-jB pathway leading to a reduction of

oxidative stress (Chen et al. 2018). Known is instead

the mechanism for the anti-HSV infection of harmine

and harmaline (Chen et al. 2018), a b-carboline
alkaloid extracted from Ophiorrhiza nicobarica

N.P.Balakr. (Rubiaceae). Specifically, it was seen that

harmaline interfered with the HSV immediate-early

transcriptional events by avoiding the recruitment of

lysine-specific demethylase-1 from its immediate-

early promoter during immediate-early complex tran-

scription. This complex is a decisive factor for HSV

latency or lytic cycle, making harmaline a molecule

capable of preventing the multiplication and reactiva-

tion of the HSV (Bag et al. 2014, 2013). An anti-HSV

activity was also evidenced for the morphinan alkaloid

6,7-di-O-acetylsinococuline obtained from the root of

Stephania cepharantha Diels (Menispermaceae), the

diterpene alkaloid benzoylmesaconine from Aconi-

tum ssp. tuber (Ranunculaceae), and the bisbenzyliso-

quinoline alkaloid tetrandrine from Stephania

tetrandra S. Moore (Menispermaceae). 6,7-Di-O-

acetylsinococuline demonstrated a promising anti-

HSV activity using in vivo model of infected mice (10

and 25 mg/kg/day, orally administered); however, a

narrow therapeutic index was seen (Nawawi et al.

2001). In contrast, benzoylmesaconine acted similarly

to oxymatrine by modulating the host immune defence

system. Benzoylmesaconine (1 lg/kg, 2 days before

and 1 and 3 days after infection, orally administered),

indeed, through the induction of antagonistic CD4? T

cells, might improve the resistance to the virus in

HSV-1 infected mice (Kobayashi et al. 1998). On the

other hand, tetrandrine (15 mg/kg, administered par-

enterally twice daily from day 7 after infection)

exerted an anti-viral and anti-inflammatory activity by

reducing mRNA expression of IL-6 and inhibiting IL-

1b and TNF-a release, thereby blocking HSV viral

replication in infected mice (Hu et al. 1999).

As well as oxymatrine, another alkaloid with an

anti-viral activity against different virus strains is

berberine, an isoquinoline alkaloid isolated from

plants of Berberis genus (Berberidaceae) which dis-

played to be effective on HBV, CHIKV, CVB3, and

IAV infection (Dai et al. 2021; Subaiea et al. 2017;

Varghese et al. 2016; Wu et al. 2011c; Yan et al.

2018). In all cases, the reduction in viral replication

was accompanied by a decrease in the inflammatory

markers. For instance, berberine significantly reduced

viral load and CHIKV-induced inflammatory diseases

in mouse models (10 mg/kg/day, administrated

intraperitoneally) by blocking ERK, p38, and JNK

(Varghese et al. 2016) and showed a strong reduction

of IAV growth (0.1 g/kg/day or 20 mg/kg/day,

intraperitoneally and orally administrated, respec-

tively), as well as suppression of the expression of

TLR7/NF-jB signaling molecules and inhibition of

the initiation of virus-induced T-cell responses and

release of pro-inflammatory cytokines in the lungs

(Wu et al. 2011c; Yan et al. 2018). Lycorine, an

alkaloid from Lycoris radiate (L’Hér.) Herb. (Amaryl-

lidaceae), was also reported to display antiviral

activity in vitro and in vivo in different virus strains

like EV71, CoVs, and Zika (Chen et al. 2020; Liu et al.

2011; Shen et al. 2019). A viral replication reduction

was seen in all these cases, but only for Zika the

mechanism of action was discovered. Specifically,

in vivo investigation on infected mice showed that

lycorine (1, 5, and 10 mg/kg/day, intragastric admin-

istration) blocked Zika replication, acting on multiple

targets since it possessed the ability to bind HSP70 and

Zika NS3 and NS5 protein (Chen et al. 2020). With the

same anti-viral mechanism as lycorine, another

Amaryllidaceae alkaloid, pancratistatin, probably

acted since it was demonstrated to reduce the RNA

replication of different flaviviruses like JEV (IC50-

= 0.022 lg/mL), yellow fever (IC50 = 0.016 lg/
mL), and DENV 4 (IC50 = 0.063 lg/mL) (Gabrielsen

et al. 1992). Specifically, pancratistanin (4 and 6 mg/

kg/day, administered intraperitoneally) and its analo-

gous, 7-deoxypancratistatin (40 mg/kg/day, admin-

istrated subcutaneously), increased the survival rate of

JEF-infected mice (Gabrielsen et al. 1992). Tetrahy-

dropalmatine, the main compound reported in genera

of Stephania and Corydalis, was also in vivo (2 mg/

kg, administered intraperitoneally twice a day)

demonstrated to reduce JEV replication and exert

neuroprotective effects by reducing the levels of TNF-
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a, IFN-c, MCP-1, and IL-6 (Lixia et al. 2018).

Castanospermine, a polyhydroxyalkaloid derived

from the seeds of the Castanospermum australe A.

Cunn. & C.Fraser (Fabaceae), demonstrated to be

broadly active in vitro against many viruses by

inhibiting a-glucosidase I and II, an enzyme that

plays an important role in viral maturation (Sch-

lesinger et al. 1985; Sunkara et al. 1990; Whitby et al.

2005; Yamashita et al. 1996; Whitby et al. 2005).

Through this mechanism of action, castanospermine

probably reduced the production and infectivity of

DENV particles and prevented mortality in infected

mice model (10, 50, and 250 mg/kg/day, administered

intraperitoneally) (Whitby et al. 2005). However, this

alkaloid is characterized by low absorption and

bioavailability; for this reason, by integrating a

lipophilic butanoyl side-chain, its oral prodrug celgo-

sivir, with the same anti-viral activity, was developed

(Durantel 2009; Rathore et al. 2011; Watanabe et al.

2012).

Other alkaloids exerted antiviral activity against

rabies virus, human syncytial virus (hRSV), CVB3,

and COVID-19. Bufotenine, a tryptamine isolated

from plants of Mimosaceae family, exerted antiviral

activity against Rabies virus infection in vitro and

in vivo by inhibiting the penetration of rabies virus

into the host cells through the inhibition of the

nicotinic acetylcholine receptor with an apparent

competitive mechanism (Vigerelli et al. 2014). How-

ever, a more recent in vivo study questioned this

mechanism of action as bufotenine did not appear to

interfere with the acetylcholine response in skeletal

muscle, indicating that its mechanism of action does

not block virus entry due to nAChR antagonism.

Furthermore, it was observed that bufotenine did not

passively penetrate cell membranes, indicating the

need for complementary structures, like cell receptors,

for cell penetration (Vigerelli et al. 2020). This

mechanism seems to underlie the increase in the

survival rate of intrathecally Rabies virus-infected

mice after bufotenine administration (0.63, 1.05, and

2.1 mg/animal per day) (Vigerelli et al. 2018, 2020).

Cyclopamine, a steroidal alkaloid from Veratrum ssp.

(Melanthiaceae), demonstrated to inhibit hRSV infec-

tion by inhibiting the Smoothened receptor (Smo) in a

BALB/c mouse model of infection (30 and 100 mg/kg

intraperitoneally). Specifically, it impaired the hRSV

RNA-dependent RNA polymerase complex by reduc-

ing the viral anti-termination factor M2-1expression

levels. This mechanism was confirmed by the fact that

a single R151K mutation in M2-1 conferred viral

resistance to cyclopamine (Bailly et al. 2016).

Sophoridine, an alkaloid extracted from Sophora

flavescensAiton (Fabaceae), was widely studied for its

beneficial and therapeutic effect on cardiac function,

including in acute and chronic viral myocarditis

caused by CVB3. This alkaloid demonstrated, through

in vivo experimentation on infected mice models (20

and 40 mg/kg/day, orally administrated), an anti-

CVB3 activity by regulating cytokine expression

since sophoridine significantly down-regulated the

mRNA expression of TNF-a and up-regulated IL-10

and IFN-c mRNA expression (Zhang et al. 2006b).

Emetine, an isoquinoline alkaloid, reported potent

in vitro (EC50 = 0.147 nM) activity against SARS-

CoV-2 and in ovo antiviral efficacy against infectious

bronchitis virus (EC50 = 2.3 ng/egg) (Kumar et al.

2021). Furthermore, a preliminary study on patients

with COVID-19 infection showed that low-dose

emetine (3.6 mg via oral administration 3 times per

day for 10 days) in combination with conventional

antiviral drugs improved clinical symptoms without

apparent adverse effects (Fan et al. 2021).

Diarylheptanoids

Diarylheptanoids frequently occur in the rhizomes of

many plants and are structurally characterized by two

aromatic rings linked by a chain with seven carbons. In

Alpinia officinarum Hance (Zingiberaceae), diaryl-

heptanoids are considered the main bioactive com-

pounds, with several pharmacological activities,

including antiviral (Abubakar et al. 2018). Among

them, 7-(400-hydroxy-300-methoxyphenyl)-1-phenyl-

4E-hepten-3-one and (5S)-5-hydroxy-7-(4-hydrox-

yphenyl)-1-phenylhept-3-one has been reported to

exhibit anti-IV activity in vitro by suppressing the

expression of viral mRNA antigens while no effect

was seen for adsorption or invasion of host cells. (5S)-

5-Hydroxy-7-(4-hydroxyphenyl)-1-phenylhept-3-one

was more effective in contrasting viral infection

in vitro than 7-(400-hydroxy-300-methoxyphenyl)-1-

phenyl-4E-hepten-3-one. However, this last was more

active in vivo (30 and 100 mg/kg via oral administra-

tion 3 times daily) since no effect was found for (5S)-

5-hydroxy-7-(4-hydroxyphenyl)-1-phenylhept-3-one,

and this was probably due to the differences in the

structure, indicating that the methoxy group linked to
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the aromatic ring of 7-(400-hydroxy-300-methoxyphe-

nyl)-1-phenyl-4E-hepten-3-one was favourable in

contrasting the influenza virus in vivo (Sawamura

et al. 2010). In contrast, (5S)-5-hydroxy-7-(4-hydrox-

yphenyl)-1-phenylhept-3-one demonstrated RSV

antiviral activity in vivo (30 mg/kg, orally 3 daily

time administration) and in vitro (EC50-

= 40.7 ± 3.5 lg/mL), and, also in this case, the

importance of chemical structure was highlighted. In

particular, the hydroxy group seemed to be essential in

reducing virus titer than other diarylheptanoids con-

taining a methoxy group in the carbon chain (Konno

et al. 2013). Another diarylheptanoid curcumin, a

bright yellow-colored bioactive diarylheptanoid from

Zingiberaceae plants, showed remarkable antiviral

activity against several viruses. In this respect,

curcumin has proven its efficacy against HSV-1

(Zandi et al. 2010), IV es PR8, H1N1, and H6N1

(Chen et al. 2011), coxsackievirus (Si et al. 2007), and

others. Specifically, curcumin might inhibit viral entry

and replication by inhibiting either HA or NA, thanks

to the presence of the hydroxyl group in the benzene-

ring meta-position and the central carbon-chain dou-

ble bonds (Lai et al. 2020). Further, an in vivo

investigation on infected mice demonstrated that

curcumin (50 and 150 mg/kg/day, administered by

oral gavage) avoided IAV-induced oxidative stress

and inflammation by activating the Nrf2-HO-1 path-

way and inhibiting TLR2/4, p38/JNKMAPK, and NF-

jB signaling pathway leading to the increase of INF-b
and the suppression of IAV replication (Dai et al.

2018b). This mechanism also underlies the ameliora-

tion of IVA-induced myocarditis in mice treated with

curcumin (100 mg/kg/day, given orally) (Liu et al.

2013). These anti-inflammatory and antioxidant activ-

ities are also related to the curcumin’s anti-viral action

against HCNV infection since an up-regulation of

SOD and GSH levels and a down-regulation of TNF-a
and IL-6 were observed in infected mice (12.5, 25, and

50 mg/kg, intragastrical administration) (Lv et al.

2014b).

Benzoic acids

Benzoic acids are organic compounds consisting of a

benzene ring with at least one carboxyl group. Among

these compounds, ginkgolic acid, extracted from the

leaves and seed coats of Ginkgo biloba L., has

demonstrated broad antiviral activity. In particular,

this compound inhibited HSV and the HSV- ACVR by

preventing the initial fusion event through the block of

either fusion or viral protein synthesis. This mecha-

nism resulted in the improvement of cutaneous

infection in HSV-infected mice after topical treatment

with ginkgolic acid (10 mM ginkgolic acid in 2.5%

hydroxyethylcellulose gel) (Bhutta et al. 2021).

Another promising benzoic acid with antiviral activity

is protocatechuic aldehyde, or 3,4-dihydroxyben-

zaldehyde, a naturally-occurring phenolic aldehyde

isolated from Salvia miltiorrhiza Bunge, which was

demonstrated to inhibit HBV DNA replication and

HBsAg and HBeAg secretion both in vivo (25, 50, and

100 mg/kg, intraperitoneally, twice daily) and in vitro

(EC50 = 3.94 ± 1.52 and 2.46 ± 0.38 lg/mL for

avoiding HBsAg and HBeAg production, respec-

tively) probably by inhibiting HBV polymerase

activity (Zhou et al. 2007).

Coumarins

Coumarins are compounds isolated from different

plant families and are structurally formed by a benzene

moiety fused to an a-pyrene ring known as benzopy-

rene. Isofraxidin, an anticoagulant compound

extracted from the plants Sarcandra glabra Thunb.

(Chloranthaceae) and Eleutherococcus senticosus

(Rupr. et Maxim.) Maxim. (Araliaceae), exhibited

therapeutic effects on IAV-induced severe pulmonary

infection in vitro and in vivo. This coumarin did not

inhibit IAV replication but significantly reduced lung

IAV-induced inflammation, suppressed platelet aggre-

gation through PI3K/AKT and MAPK pathways

regulation, and decreased the serum levels of IL-1b,
IL-6, TNF-a, and MIP-2 in infected mice (10, 20, and

40 mg/kg/day, orally administrated) (Jin et al. 2020).

Contrarily, calanolide A, a pyranocoumarin found in

several species belonging to Calophyllum genus,

directly avoided HIV replication by inhibiting HIV-1

reverse transcriptase both in vivo and in vitro (Currens

et al. 1996; Xu et al. 1999). Another coumarin-like

compound, dicoumarol, expressed a high antiviral

activity on HBV infection by inhibiting the NQO1 and

then avoiding HBx expression and recruitment to

cccDNA. In this way, cccDNA transcriptional activity

was inhibited, thereby preventing HBV RNAs, HBV

DNA, HBsAg, and HBc protein synthesis in either

HBV-infected cells or humanized liver mouse models
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(10 and 20 mg/kg/day, intraperitoneally adminis-

trated) (Cheng et al. 2021).

Other natural compounds

The limonoid toosendamin, fromMelia azedarach L.

(Meliaceae), demonstrated an anti-IAV activity both

in vivo (1 mg/kg/day, orally administrated) and

in vitro by inhibiting the infection early-stage through

binding the polymerase acidic (PA) protein of the IAV

polymerase complex with a greater extent than the

licensed PA protein inhibitor. In this way, toosenda-

min did not affect HA or NA directly but inhibited the

mRNA synthesis of HA, nucleoprotein (NP), and M2,

and the expression of NP, PA, M2, and NS1, leading to

the suppression of IAV infection (Jin et al. 2019).

Resveratrol is a natural polyphenol stilbene mainly

found in fermented grapes, mulberry, red wine, and

peanuts. It inhibited a wide variety of pathogenic

human and animal viruses, and sometimes it interfered

with infection by altering cellular pathways rather than

acting directly against the virus itself. In this respect,

different papers reported that the resveratrol activity

relies on its implication with the immune system and

with the innate immunity factors, particularly IFN-a,
IFN-c, TNF-a, and IL-12, whose levels are considered
critical for the antiviral activity. Resveratrol was

shown to be an inhibitor agent of varicella-zoster virus

(Docherty et al. 2006), HCMV (Evers et al. 2004), and

IVes (Palamara et al. 2005). Specifically, resveratrol

strongly inhibited IAV influenza infection by blocking

the viral ribonucleoprotein nuclear cytoplasmatic

translocation and reducing the late viral protein

expression, probably by inhibiting protein kinase C

activity and its signaling pathway. This mechanism

underlying the improved survival rate and decreased

lungs viral titer observed in infected mice after

resveratrol administration (1 mg/kg/day via intraperi-

toneal injection) (Palamara et al. 2005). The resver-

atrol anti-inflammatory properties were instead related

to the anti-RSV activity since its administration to

mice (30 mg/kg/day, intraperitoneal administration)

reduced viral titers and airway inflammation (Zang

et al. 2015, 2011). These effects were related to the

regulation of Toll-like receptor 3 (TLR3) and M2

expression, the TRIF signaling pathway inhibition,

and the reduction of nerve growth factor (NGF) levels,

thereby lowering IFN-c and IL-6 levels related to

RSV-induced airway inflammation (Xie et al. 2012;

Zang et al. 2015, 2011). Resveratrol also avoided the

in vitro replication of HSV-1 and HSV-2 in a dose-

dependent manner by decreasing the virus yield

through inhibition of an early phase of the replication

cycle and reduction of early viral protein production

(Cheng et al. 2014). This activity resulted in the

improvement of RSV infection in mice after resver-

atrol topical application (Docherty et al. 2005, 2004).

Hypericin and pseudohypericin are two aromatic

polycyclic diones, found in many Hypericum species

(Hypericaceae) and isolated for the first time from

Hypericum perforatum L. In general, both compounds

exhibit a broad spectrum of antiviral activity against

several viruses (Karioti and Bilia 2010). Tang et al.

(1990) demonstrated the virucidal effect of hypericin

against enveloped viruses (Mo-MuLV, herpes sim-

plex, IV A), when the virus was incubated with

hypericin before infection. This effect was also

demonstrated in vivo since hypericin and pseudohy-

pericin (50 lg/mL), if pre-incubated with the virus for

1 h at 37 �C, were highly effective in preventing HSV-
1-induced encephalitis and death in CD-1 mice,

displaying 100% survival six days after infection

respect to the control, while they were only moder-

ately effective if pre-incubated with the virus for 1 h at

4 �C, and not effective if administered concurrently

with the virus. These data suggest that the utility of

hypericin and pseudohypericin could depend on pre-

treating cells with these compounds to create an

antiviral state (Tang et al. 1990). The carotenoid

crocetin, from Crocus sativis L., demonstrated strong

antiviral activity against CVB3-induced myocarditis.

It was indeed seen that crocetin (2.5 and 5 mg/kg/day,

intraperitoneally administrated) reduced IL-17 and

ROCK2 expression, thereby exerting a cardioprotec-

tive effect in infected mice by decreasing viral

replication and inflammatory response (Qin et al.

2021). Finally, the seco-pregnane steroidal glycoside

paniculatumoside C, isolated from Cynanchum pan-

iculatum (Bunge) Kitag. Ex H.Hara (Apocynaceae),

has revealed a significant antiviral property by

inhibiting viral replication of several RNA viruses,

including the Getah virus, eastern equine encephalitis

virus, tobacco mosaic virus, and sindbis virus (Li et al.

2007). Specifically, in vivo investigation showed that

paniculatumoside C administration (5, 50, and

100 mg/kg/day) protected mice from lethal sindbis

virus infection. Using the tobacco mosaic virus and

sindbis virus as models, investigations about the action

123

Phytochem Rev



mechanism suggested that this compound predomi-

nantly acted by suppressing the viral subgenomic

RNA(s) expression without interfering with viral

genomic RNA accumulation (Li et al. 2007).

Conclusions

In recent years, particular attention has been paid to

the pandemic threat of viruses that can have harmful

effects on humans, plants, and animals. Viruses have

started the most lethal and terrifying illnesses the

world has ever known; an example is the ongoing 2019

coronavirus pandemic (COVID-19). Vaccination is

the main strategy used to prevent viral infection;

however, its long-term efficacy might be compro-

mised due to viral mutation. On the other hand, the

major issue in viral infection is the rapid development

of resistance against licensed antiviral drugs making

the need to identify new antiviral agents characterized

by the highest efficacy and less toxicity. Several

traditional medicinal plants have been reported to

possess strong antiviral activity thanks to specialized

metabolites able to act through multiple mechanisms,

distinguishing them from the usual synthetic drugs

that mainly act on a single target. In this systematic

review, the main antiviral mechanisms of action of

natural molecules were described making them

promising antiviral agents. We have resumed in a

systematic way all the knowledge that is available on

plant natural products tested in vivo up to now. It is

evident, as natural products that have been mostly

tested in vivo on animal models have not always

demonstrated an outstanding antiviral effect, at least

on the tested virus strain, while others, belonging to

different classes, have shown promising results acting

on both inflammation and/or on virus replication. On

the other hand, it is possible to observe that just a few

of the most promising molecules have been tested in

clinical studies. In fact, only limited clinical investi-

gations were successfully done proving an interesting

and transferable use at human level as drugs; (e.g.,

silibinin or oxymatrine on hepatitis). This lack of

studies is mainly due to the not easy patentability and

profitable uses of the plant small molecules chemical

structure since they are common knowledge. Unfor-

tunately, to obtain a patent of a molecule an enormous

effort in terms of drug research and development and

of money (hundreds of millions of dollars) are

necessary. The recovery of the expenses for the

pharmaceutical companies, mainly involved in this

process, by either licensing the patent to other

manufacturers or by acting as the sole manufacturer

themselves is not often possible; so due to the clinical

studies costs and also to the presence of other

pharmacological strategies, such as synthetic antivi-

rals or vaccines, the plant small molecules listed in this

review have not obtained the full attention they merit.

However, apart from this issue, there are others

upstream since several challenges arise during drug

discovery or natural compounds in vivo studies, e.g.

solubility, bioavailability, and toxicity that may occur

after plant natural compounds bioactivation. One of

the critical points in many plant specialized metabo-

lites is their biotransformation and bioavailability in

human. The biotransformation of many classes of

these compounds has been a controversial issue over

the last decades. Moreover, high polar molecules,

overall tannins, flavonoids, and their glycosides, could

be adsorbed and biotransformed by intestinal micro-

biota; moreover several derivatisations have been

shown to be effective in increasing solubility and

reducing toxicity (Owen et al. 2022). Regarding

bioactivation, it was seen that several herb-induced

toxicities are a consequence of herbal constituents’

biotransformation into electrophilic reactive metabo-

lites that may covalently link vital macromolecules

into the body. For example, at physiologically relevant

concentrations, furanocoumarins may be bioactivated

in molecules able to inactivate enzymes involved in

drug metabolism leading to the manifestation of herb-

drug interaction. In the same way, the bioactivation of

several terpenoids may lead to toxic compounds;

hence it is important to focus research on the potential

toxicity of natural compounds and their bioactivation

products (Wen et al. 2019). Finally, it is important not

to label a molecule of natural origin as biologically

active just basing on in vitro assay using cell models

since some compounds may be fluorescent or strongly

coloured, thereby giving positive signals and so false

readings even if, for example, in the case of an

interaction with an enzyme, a protein is not present.

Moreover, several plant small molecules, mainly

belonging to the polyphenol group, were reported to

interact with different and numerous protein targets

and to present panacea-like properties. This behaviour

over the years brings to the description of a wrong

mechanism of action for several plant compounds due
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to their nonspecific and promiscuous activity. It’s

largely reported that this characteristic is due to

chemical (photo)reactivity, redox cycling, metal

chelation, interferences with the assay technology,

membrane disruption, etc., which depends on the

presence of several substructures in the molecule

defined as interfering. An acronym used to classify

these kinds of molecules is PAINS (pan-assay inter-

ference compound) and several new guidelines were

published to help researchers to avoid money and time

consumption in the study of their bioactivity (Baell

and Walters 2014; Bisson et al. 2016). Actually, the

possible PAINS can be discovered experimentally or

by using prognostic values to highlight possible

aggregation and/or interference based only on the

chemical structure of the tested compound. It’s almost

clear that PAINS are a real issue and a preliminary

non-critical analysis should be avoided before going

on with research projects involving these compounds.

On the other hand, other reports indicated that a

molecule classified as PAINS does not have high assay

promiscuity, therefore also this concept should not be

blindly used but verified using data coming for

example from different and orthogonal assays

(Aldrich et al. 2017). From our literature survey, the

antiviral in vivo studies on plant small molecules

stated some benefits from their use, so it will be crucial

to design different kinds of clinical trials to provide

conclusive evidence of their efficacy. Moreover,

compounds emerging from preliminary antiviral

in vivo assays could be an important starting point as

chemical scaffolds to develop by medicinal chemistry

approaches new molecules with antiviral activity.

Therefore, scientific research on antiviral plant natural

products should be carried out with critical issues

covering all the previous aspects. Moreover, for

clinical trials is important to give preliminary evidence

of specialized plant compounds’ antiviral efficacy; for

this reason, this review mainly focuses on in vivo

investigation and may provide the scientific basis for

future studies on the applicability of natural active

metabolites for preventing and treating viral infection.
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