255 research outputs found

    Inhibition of Poly(ADP-Ribose) polymerase enhances the toxicity of 131I-Metaiodobenzylguanidine/Topotecan combination therapy to cells and xenografts that express the noradrenaline transporter

    Get PDF
    Targeted radiotherapy using [131I]meta-iodobenzylguanidine ([131I]MIBG) has produced remissions in some neuroblastoma patients. We previously reported that combining [131I]MIBG with the topoisomerase I (Topo-I) inhibitor topotecan induced long-term DNA damage and supra-additive toxicity to NAT-expressing cells and xenografts. This combination treatment is undergoing clinical evaluation. This present study investigated the potential of PARP-1 inhibition, in vitro and in vivo, to further enhance [131I]MIBG/topotecan efficacy

    Anatomy and origin of authochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract

    Get PDF
    High-resolution seismic reflection data from the east Coromandel coast, New Zealand, provide details of the sequence stratigraphy beneath an autochthonous, wave dominated inner shelf margin during the late Quaternary (0-140 ka). Since c. 1 Ma, the shelf has experienced limited subsidence and fluvial sediment input, producing a depositional regime characterised by extensive reworking of coastal and shelf sediments during glacio-eustatic sea-level fluctuations. It appears that only one complete fifth-order (c. 100 000 yr) depositional sequence is preserved beneath the inner shelf, the late Pleistocene Waihi Sequence, suggesting any earlier Quaternary sequences were mainly cannibalised into successively younger sequences. The predominantly Holocene-age Whangamata Sequence is also evident in seismic data and modern coastal deposits, and represents an incomplete depositional sequence in its early stages of formation. A prominent aspect of the sequence stratigraphy off parts of the east Coromandel coast is the presence of forced regressive deposits (FRDs) within the regressive systems tract (RST) of the late Pleistocene Waihi Sequence. The FRDs are interpreted to represent regressive barrier-shoreface sands that were sourced from erosion and onshore reworking of underlying Pleistocene sediments during the period of slow falling sea level from isotope stages 5 to 2 (c. 112-18 ka). The RST is volumetrically the most significant depositional component of the Waihi Sequence; the regressive deposits form a 15-20 m thick, sharp-based, tabular seismic unit that downsteps and progrades continuously across the inner shelf. The sequence boundary for the Waihi Sequence is placed at the most prominent, regionally correlative, and chronostratigraphically significant surface, namely an erosional unconformity characterised in many areas by large incised valleys that was generated above the RST. This unconformity is interpreted as a surface of maximum subaerial erosion generated during the last glacial lowstand (c. 18 ka). Although the base of the RST is associated with a prominent regressive surface of erosion, this is not used as the sequence boundary as it is highly diachronous and difficult to identify and correlate where FRDs are not developed. The previous highstand deposits are limited to subaerial barrier deposits preserved behind several modern Holocene barriers along the coast, while the transgressive systems tract is preserved locally as incised-valley fill deposits beneath the regressive surface of erosion at the base of the RST. Many documented late Pleistocene RSTs have been actively sourced from fluvial systems feeding the shelf and building basinward-thickening, often stacked wedges of FRDs, for which the name allochthonous FRDs is suggested. The Waihi Sequence RST is unusual in that it appears to have been sourced predominantly from reworking of underlying shelf sediments, and thus represents an autochthonous FRD. Autochthonous FRDs are also present on the Forster-Tuncurry shelf in southeast Australia, and may be a common feature in other shelf settings with low subsidence and low sediment supply rates, provided shelf gradients are not too steep, and an underlying source of unconsolidated shelf sediments is available to source FRDs. The preservation potential of such autochthonous FRDs in ancient deposits is probably low given that they are likely to be cannibalised during subsequent sea-level falls

    Expression quantitative trait loci are highly sensitive to cellular differentiation state

    Get PDF
    Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Perceptions of newly admitted undergraduate medical students on experiential training on community placements and working in rural areas of Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uganda has an acute problem of inadequate human resources partly due to health professionals' unwillingness to work in a rural environment. One strategy to address this problem is to arrange health professional training in rural environments through community placements. Makerere University College of Health Sciences changed training of medical students from the traditional curriculum to a problem-based learning (PBL) curriculum in 2003. This curriculum is based on the SPICES model (student-centered, problem-based, integrated, community-based and services oriented). During their first academic year, students undergo orientation on key areas of community-based education, after which they are sent in interdisciplinary teams for community placements. The objective was to assess first year students' perceptions on experiential training through community placements and factors that might influence their willingness to work in rural health facilities after completion of their training.</p> <p>Methods</p> <p>The survey was conducted among 107 newly admitted first year students on the medical, nursing, pharmacy and medical radiography program students, using in-depth interview and open-ended self-administered questionnaires on their first day at the college, from October 28-30, 2008. Data was collected on socio-demographic characteristics, motivation for choosing a medical career, prior exposure to rural health facilities, willingness to have part of their training in rural areas and factors that would influence the decision to work in rural areas.</p> <p>Results</p> <p>Over 75% completed their high school from urban areas. The majority had minimal exposure to rural health facilities, yet this is where most of them will eventually have to work. Over 75% of the newly admitted students were willing to have their training from a rural area. Perceived factors that might influence retention in rural areas include the local context of work environment, support from family and friends, availability of continuing professional training for career development and support of co-workers and the community.</p> <p>Conclusion</p> <p>Many first year students at Makerere University have limited exposure to health facilities in rural areas and have concerns about eventually working there.</p

    Antineoplastic activity of idazoxan hydrochloride

    Get PDF
    Idazoxan hydrochloride (IDA) is a 241 molecular weight imidazoline and adrenoreceptor ligand. It binds to mitochondrial membranes and promotes apoptosis of pancreatic beta cells. Since IDA has not been tested against tumor cells, the purpose of our study was to determine if IDA has antineoplastic activity. We used the conversion of a soluble tetrazolium salt to an insoluble formazan precipitate and differential staining cytotoxicity assays to determine if IDA was cytotoxic to cell lines of murine lung cancer and human prostate cancer, as well as to a variety of fresh human tumor samples. We used flow cytometry to analyze cell death and calreticulin expression. IDA is cytotoxic to both cell lines and against aliquots of specimens of breast, gastric, lung, ovarian and prostate cancers as well as non-Hodgkin’s lymphoma. It produces apoptotic cell death and promotes calreticulin expression, suggesting that IDA might be immunomodulatory in vivo. We anticipate that IDA will be clinically useful in cancer treatment

    Codon swapping of zinc finger nucleases confers expression in primary cells and in vivo from a single lentiviral vector

    Get PDF
    BACKGROUND: Zinc finger nucleases (ZFNs) are promising tools for genome editing for biotechnological as well as therapeutic purposes. Delivery remains a major issue impeding targeted genome modification. Lentiviral vectors are highly efficient for delivering transgenes into cell lines, primary cells and into organs, such as the liver. However, the reverse transcription of lentiviral vectors leads to recombination of homologous sequences, as found between and within ZFN monomers. METHODS: We used a codon swapping strategy to both drastically disrupt sequence identity between ZFN monomers and to reduce sequence repeats within a monomer sequence. We constructed lentiviral vectors encoding codon-swapped ZFNs or unmodified ZFNs from a single mRNA transcript. Cell lines, primary hepatocytes and newborn rats were used to evaluate the efficacy of integrative-competent (ICLV) and integrative-deficient (IDLV) lentiviral vectors to deliver ZFNs into target cells. RESULTS: We reduced total identity between ZFN monomers from 90.9% to 61.4% and showed that a single ICLV allowed efficient expression of functional ZFNs targeting the rat UGT1A1 gene after codon-swapping, leading to much higher ZFN activity in cell lines (up to 7-fold increase compared to unmodified ZFNs and 60% activity in C6 cells), as compared to plasmid transfection or a single ICLV encoding unmodified ZFN monomers. Off-target analysis located several active sites for the 5-finger UGT1A1-ZFNs. Furthermore, we reported for the first time successful ZFN-induced targeted DNA double-strand breaks in primary cells (hepatocytes) and in vivo (liver) after delivery of a single IDLV encoding two ZFNs. CONCLUSION: These results demonstrate that a codon-swapping approach allowed a single lentiviral vector to efficiently express ZFNs and should stimulate the use of this viral platform for ZFN-mediated genome editing of primary cells, for both ex vivo or in vivo applications

    Characterisation of Muta™Mouse λgt10-lacZ transgene: evidence for in vivo rearrangements

    Get PDF
    The multicopy λgt10-lacZ transgene shuttle vector of Muta™Mouse serves as an important tool for genotoxicity studies. Here, we describe a model for λgt10-lacZ transgene molecular structure, based on characterisation of transgenes recovered from animals of our intramural breeding colony. Unique nucleotide sequences of the 47 513 bp monomer are reported with GenBank® assigned accession numbers. Besides defining ancestral mutations of the λgt10 used to construct the transgene and the Muta™Mouse precursor (strain 40.6), we validated the sequence integrity of key λ genes needed for the Escherichia coli host-based mutation reporting assay. Using three polymerase chain reaction (PCR)-based chromosome scanning and cloning strategies, we found five distinct in vivo transgene rearrangements, which were common to both sexes, and involved copy fusions generating ∼10 defective copies per haplotype. The transgene haplotype was estimated by Southern hybridisation and real-time–polymerase chain reaction, which yielded 29.0 ± 4.0 copies based on spleen DNA of Muta™Mouse, and a reconstructed CD2F1 genome with variable λgt10-lacZ copies. Similar analysis of commercially prepared spleen DNA from Big Blue® mouse yielded a haplotype of 23.5 ± 3.1 copies. The latter DNA is used in calibrating a commercial in vitro packaging kit for E.coli host-based mutation assays of both transgenic systems. The model for λgt10-lacZ transgene organisation, and the PCR-based methods for assessing copy number, integrity and rearrangements, potentially extends the use of Muta™Mouse construct for direct, genomic-type assays that detect the effects of clastogens and aneugens, without depending on an E.coli host, for reporting effects
    corecore