9 research outputs found
The Economics of Corrections: An Exposition
The purpose of this dissertation is to present an exposition of the applications of economics to corrections. The approach includes a synthesis of knowledge in the area, suggestions on how economics might be further brought to bear on correctional issues, and recommendations for future research. The overall framework is one of policy analysis, in which objective, scientifically-based information is used in the action setting of public programs.
A review of the history of corrections is included to provide an appreciation for the multiple, conflicting goals under which corrections functions today. A review of the state-of-the-art in corrections provides a sense of the magnitude of the populations, activities, and expenditures which characterize this component of the criminal justice system.
The role and contributions of cost, comparative cost, cost-effectiveness, and cost-benefit analysis are extensively surveyed, illustrating the substantial existing knowledge of correctional inputs and the lesser state of output measures and valuation.
Economic research on institutions (prisons and jails) is reviewed and critiqued. Preliminary findings on correctional cost functions, the nature of marginal and average costs for state and federal institutions are reviewed and policy recommendations discussed. Prison industries are discussed in the context of opportunity costs, human resource accounting, and the need for goal specification prior to further analysis.
Corrections in the community is analyzed from an economic perspective; private sector service providers, subsidy programs, and offender restitution, fees, and financial aid are reviewed from both the viewpoint of current research findings and the potential for additional economic research.
Contributions and recommendations are examined for their feasibility in a policy setting and suggestions are offered to improve future research and widen the application of economics to corrections
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.
RESULTS:
A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization.
CONCLUSIONS:
The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
Breaking the Barriers: Cases of Racial Discrimination in Public Management
Session presenters discuss six cases of racial and gender discrimination in the civil service, distilled from actual events, in search of applied lessons for improving managing diversity
The challenges and opportunities of offering and integrating training in clinical molecular genetics and clinical cytogenetics: A survey of LGG Fellowship Program Directors
Purpose: The specialty of Laboratory Genetics and Genomics (LGG) was created in 2017 in an effort to reflect the increasing convergence in technologies and approaches between clinical molecular genetics and clinical cytogenetics. However, there has not yet been any formal evaluation of the merging of these disciplines and the challenges faced by Program Directors (PDs) tasked with ensuring the successful training of laboratory geneticists under the new model. Methods: An electronic multi-question Qualtrics survey was created and was sent to the PD for each of the Accreditation Council for Graduate Medical Education–accredited LGG fellowship programs at the time. The data were collected, and the responses were aggregated for each question. Results: All of the responding PDs had started training at least 1 LGG fellow. PDs noted challenges with funding, staff shortages, molecular/cytogenetics content integration, limited total training time, increased remote work, increased sendout testing, and a lack of prior cytogenetics knowledge among incoming fellows. Conclusion: This survey attempted to assess the challenges that LGG PDs have been facing in offering and integrating clinical molecular genetics and clinical cytogenetics fellowship training. Common challenges between programs were noted, and a set of 6 concluding comments are provided to facilitate future discussion
The challenges and opportunities of offering and integrating training in clinical molecular genetics and clinical cytogenetics: A survey of LGG Fellowship Program Directors
Purpose: The specialty of Laboratory Genetics and Genomics (LGG) was created in 2017 in an effort to reflect the increasing convergence in technologies and approaches between clinical molecular genetics and clinical cytogenetics. However, there has not yet been any formal evaluation of the merging of these disciplines and the challenges faced by Program Directors (PDs) tasked with ensuring the successful training of laboratory geneticists under the new model.
Methods: An electronic multi-question Qualtrics survey was created and was sent to the PD for each of the Accreditation Council for Graduate Medical Education-accredited LGG fellowship programs at the time. The data were collected, and the responses were aggregated for each question.
Results: All of the responding PDs had started training at least 1 LGG fellow. PDs noted challenges with funding, staff shortages, molecular/cytogenetics content integration, limited total training time, increased remote work, increased sendout testing, and a lack of prior cytogenetics knowledge among incoming fellows.
Conclusion: This survey attempted to assess the challenges that LGG PDs have been facing in offering and integrating clinical molecular genetics and clinical cytogenetics fellowship training. Common challenges between programs were noted, and a set of 6 concluding comments are provided to facilitate future discussion
Recommended from our members
Lessons learned from the eMERGE Network: balancing genomics in discovery and practice
The Electronic Medical Records and Genomics (eMERGE) Network, established in 2007, is a consortium of academic and integrated health systems conducting discovery and implementation research in translational genomics. Here, we outline the history of the network, highlight major impacts and lessons learned, and present the tools and resources developed for large-scale genomic analyses and translation into a clinical setting. The network developed methods to extract phenotypes from the electronic medical record to perform genome-wide and phenome-wide association studies. Recruited cohorts were clinically sequenced off a custom panel for targeted sequencing of variants and monogenic disease risks and returned to participants to investigate the impact of return of genomic results. After generating a 105,000 participant-imputed genome-wide association study (GWAS) dataset for discovery, the network enrolled and sequenced 24,998 participants. Integration of these results into the medical record and the effects of results on participants provided key lessons to the field. These learned lessons inform genetic research in diverse populations and provide insights into the clinical impact of return and implementation of genomic medicine using the electronic medical record. The lessons produced by the eMERGE Network can be utilized by other consortia as translational genomic medicine research evolves