9 research outputs found

    Donepezil, Anti-Alzheimer's Disease Drug, Prevents Cardiac Rupture during Acute Phase of Myocardial Infarction in Mice

    Get PDF
    Background: We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI. Methods and Results: In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group. Conclusion: The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI

    Influence of dosing times on cisplatin-induced peripheral neuropathy in rats

    Get PDF
    Background: Although cis-diamminedichloro-platinum (CDDP) exhibits strong therapeutic effects in cancer chemotherapy, its adverse effects such as peripheral neuropathy, nephropathy, and vomiting are dose-limiting factors. Previous studies reported that chronotherapy decreased CDDP-induced nephropathy and vomiting. In the present study, we investigated the influence of dosing times on CDDP-induced peripheral neuropathy in rats. Methods: CDDP (4 mg/kg) was administered intravenously at 5:00 or 17:00 every 7 days for 4 weeks to male Sprague-Dawley rats, and saline was given to the control group. To assess the dosing time dependency of peripheral neuropathy, von-Frey test and hot-plate test were performed. Results: In order to estimate hypoalgesia, the hot-plate test was performed in rats administered CDDP weekly for 4 weeks. On day 28, the withdrawal latency to thermal stimulation was significantly prolonged in the 17:00-treated group than in the control and 5:00-treated groups. When the von-Frey test was performed to assess mechanical allodynia, the withdrawal threshold was significantly lower in the 5:00 and 17:00-treated groups than in the control group on day 6 after the first CDDP dose. The 5:00-treated group maintained allodynia throughout the experiment with the repeated administration of CDDP, whereas the 17:00-treated group deteriorated from allodynia to hypoalgesia. Conclusions: It was revealed that the severe of CDDP-induced peripheral neuropathy was inhibited in the 5:00-treated group, whereas CDDP-treated groups exhibited mechanical allodynia. These results suggested that the selection of an optimal dosing time ameliorated CDDP-induced peripheral neuropathy

    Effects of a rifampicin pre-treatment on linezolid pharmacokinetics.

    No full text
    Linezolid is an oxazolidinone antibiotic that effectively treats methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Since rifampicin induces other antibiotic effects, it is combined with linezolid in therapeutic regimes. However, linezolid blood concentrations are reduced by this combination, which increases the risk of the emergence of antibiotic-resistant bacteria. We herein demonstrated that the combination of linezolid with rifampicin inhibited its absorption and promoted its elimination, but not through microsomal enzymes. Our results indicate that the combination of linezolid with rifampicin reduces linezolid blood concentrations via metabolic enzymes

    Lamellarin-inspired potent topoisomerase I inhibitors with the unprecedented benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-one scaffold

    Get PDF
    A new class of topoisomerase I inhibitors containing the unprecedented benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-one (abbreviated as BBPI) ring system have been developed based on structure-activity relationship studies of the cytotoxic marine alkaloid lamellarin D. The pentacyclic BBPI scaffold was constructed from N-tert-butoxycarbonylpyrrole by sequential and regioselective functionalization of the pyrrole core using directed lithiation, conventional electrophilic substitution, and palladium-catalyzed cross-coupling reactions. Further N-alkylation of the scaffold followed by selective deprotection of the O-isopropyl group produced a range of N-substituted BBPI derivatives. The BBPIs thus prepared exhibited potent topoisomerase I inhibitory activity in DNA relaxation assays. The activities of BBPIs were higher than those of lamellarin D and camptothecin; they showed potent and selective antiproliferative activity in the panel of 39 human cancer cell lines established by Japanese Foundation for Cancer Research. COMPARE analyses indicated that the inhibition patterns of the BBPIs correlated well with those of the known topoisomerase I inhibitors such as SN-38 and TAS-103. The water-soluble valine ester derivative exhibited antitumor activity in vivo against murine colon carcinoma colon 26. The activity was comparable to that of the approved anticancer agent irinotecan

    Additional file 3: of Influence of dosing times on cisplatin-induced peripheral neuropathy in rats

    No full text
    Dosing-time dependent change in the antitumor effect after CDDP 5 mg/kg i.v. every 7 days at 5:00 or 17:00 in A549 tumor bearing mice. ●: control group, □: CDDP 5:00 treated group, ■: CDDP 17:00 treated group, Arrows: CDDP administrations. Each value represents the mean ± S.E.M. of 9 or 10 mice. **: P < 0.01 (Scheffe’s test). The 17:00 treated group decreased the relative tumor growth compared with the 5:00 treated group. (PPTX 355 kb

    Additional file 1: of Influence of dosing times on cisplatin-induced peripheral neuropathy in rats

    No full text
    Historogical change of sciatic nerve after the fourth administration of CDDP. No significant differences were observed between the control and 17:00-treated groups. (PPTX 271 kb

    Additional file 2: of Influence of dosing times on cisplatin-induced peripheral neuropathy in rats

    No full text
    Influence of CDDP dosing times on SNCV after the fourth administration of CDDP to rats on day 27. Each value represents the mean with S.E.M. (n = 7–10). (PPTX 74 kb
    corecore