566 research outputs found

    Drug transporter regulation in tumors by DNA methylation

    Get PDF
    Epigenetic alterations, such as aberrant DNA methylation, are a hallmark of cancer. DNA hypermethylation of the promoter region affects, for example, the expression of tumor suppressor genes and is associated with their transcriptional silencing in tumors. A recent report has provided evidence for epigenetic silencing of the multispecific organic cation transporter SLC22A1 in hepatocellular carcinoma. Given the role of this transporter in the cellular uptake of several anticancer drugs, the study provided a novel mechanism to explain the substantial variability in treatment response, and it might provide a new strategy for optimization of pharmacotherapy of hepatocellular carcinoma

    Renal Transporter-Mediated Drug-Biomarker Interactions of the Endogenous Substrates Creatinine and N1 -Methylnicotinamide : A PBPK Modeling Approach

    Get PDF
    Endogenous biomarkers for transporter-mediated drug-drug interaction (DDI) predictions represent a promising approach to facilitate and improve conventional DDI investigations in clinical studies. This approach requires high sensitivity and specificity of biomarkers for the targets of interest (e.g., transport proteins), as well as rigorous characterization of their kinetics, which can be accomplished utilizing physiologically-based pharmacokinetic (PBPK) modeling. Therefore, the objective of this study was to develop PBPK models of the endogenous organic cation transporter (OCT)2 and multidrug and toxin extrusion protein (MATE)1 substrates creatinine and N1-methylnicotinamide (NMN). Additionally, this study aimed to predict kinetic changes of the biomarkers during administration of the OCT2 and MATE1 perpetrator drugs trimethoprim, pyrimethamine, and cimetidine. Whole-body PBPK models of creatinine and NMN were developed utilizing studies investigating creatinine or NMN exogenous administration and endogenous synthesis. The newly developed models accurately describe and predict observed plasma concentration-time profiles and urinary excretion of both biomarkers. Subsequently, models were coupled to the previously built and evaluated perpetrator models of trimethoprim, pyrimethamine, and cimetidine for interaction predictions. Increased creatinine plasma concentrations and decreased urinary excretion during the drug-biomarker interactions with trimethoprim, pyrimethamine, and cimetidine were well-described. An additional inhibition of NMN synthesis by trimethoprim and pyrimethamine was hypothesized, improving NMN plasma and urine interaction predictions. To summarize, whole-body PBPK models of creatinine and NMN were built and evaluated to better assess creatinine and NMN kinetics while uncovering knowledge gaps for future research. The models can support investigations of renal transporter-mediated DDIs during drug development

    Inconsistencies and ambiguities in liver-disease-related contraindications: a systematic analysis of SmPCs/PI of Major Drug Markets

    Get PDF
    Liver disease is a common condition worldwide that can cause alterations in drug disposition and susceptibility to drug toxicities, with increased risk of adverse drug reactions. European Summaries of Product Characteristics (SmPCs) and United States Prescribing Information (US PI) should therefore be comprehensible to prescribers regarding their liver-associated contraindications to ensure safe prescribing. This study aimed to evaluate the ambiguity of terminology used in communicating liver-associated absolute contraindications in SmPCs/PI of commonly prescribed drugs in four major drug markets (Germany, Switzerland, the United Kingdom, and the United States) by assigning wordings to different categories and analyzing their clinical comprehensibility. For US PI, 79% did not contain liver-related contraindications, compared to 2, 13, and 6% of German, Swiss, and British SmPCs, respectively. Study findings indicate that out of 228 examined SmPCs/PI containing liver-related contraindications, 77, 79, 76, and 52% contained unclear wording in the German, Swiss, British, and American drug market, respectively. Only 40% (German), 52% (Swiss), 39% (British), and 29% (American) of SmPCs/PI included terms with explicit wording. Including more precise statements in SmPCs/PI based on laboratory parameters (such as albumin) or scores (e.g., the Child–Pugh score) to objectify the severity of liver disease may improve the clarity of SmPCs/PI and the safety of drug prescription

    The renal transport protein OATP4C1 mediates uptake of the uremic toxin asymmetric dimethylarginine (ADMA) and efflux of cardioprotective L-homoarginine

    Get PDF
    Elevated plasma concentrations of the uremic toxin asymmetrical dimethylarginine (ADMA) and low plasma concentrations of L-homoarginine are independently associated with cardiovascular events and total mortality. Enzymes degrading ADMA [dimethylaminohydrolase 1 (DDAH1)] and synthesizing L-homoarginine [L-arginine:glycine amidinotransferase (AGAT)] are expressed in human proximal tubule cells. So far, it is not known which transport protein in the basolateral membrane of proximal tubule cells is mediating the uptake of ADMA into the cells for subsequent degradation or the export of intracellularly synthesized L-homoarginine. One study suggested that the uptake transporter OATP4C1 (gene symbol SLCO4C1) may be involved in the transport of ADMA and other uremic toxins. OATP4C1 is a member of the SLCO/SLC21 family of solute carriers, localized in the basolateral membrane of human proximal tubule cells. By using stably-transfected HEK cells overexpressing human OATP4C1, we demonstrate that ADMA and L-homoarginine are substrates of OATP4C1 with Km values of 232.1 μM and 49.9 μM, respectively. ADMA and the structurally related uremic toxin SDMA (100 μM) inhibited OATP4C1-mediated L-homoarginine uptake (P < 0.01), whereas other tested uremic toxins such as urea and p-cresyl sulfate have no effect on OATP4C1-mediated transport. Preloading experiments (300 μM for 60 min) with subsequent efflux studies revealed that OATP4C1 also facilitates efflux e.g. of L-homoarginine. Both ADMA and L-homoarginine are substrates of human OATP4C1. Because proximal tubule cells are one site of ADMA metabolism and L-homoarginine synthesis, we postulate a protective role of OATP4C1 by mediating uptake of ADMA from and export of L-homoarginine into the systemic circulation

    Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner

    Get PDF
    Funding: This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 387509280, SFB 1350), the Alexander von Humboldt Foundation (3.3-GRO/1143730 STP), the Interdisziplin ̈ares Zentrum für KlinischeForschung of Friedrich-Alexander University (IZKF, TP-A33), and the Bayerische Forschungsstiftung (PDOK-74-10).Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, affecting a wide range of renal functions. Conflicting data have been reported regarding the effects of PGE2 on tubular water and ion transport. The amiloride-sensitive epithelial sodium channel (ENaC) is rate limiting for transepithelial sodium transport in the aldosterone-sensitive distal nephron. The aim of the present study was to explore a potential role of PGE2 in regulating ENaC in cortical collecting duct (CCD) cells. Short-circuit current (ISC) measurements were performed using the murine mCCDcl1 cell line known to express characteristic properties of CCD principal cells and to be responsive to physiological concentrations of aldosterone and vasopressin. PGE2 stimulated amiloride-sensitive ISC via basolateral prostaglandin E receptors type 4 (EP4) with an EC50 of ∼7.1 nM. The rapid stimulatory effect of PGE2 on ISC resembled that of vasopressin. A maximum response was reached within minutes, coinciding with an increased abundance of β-ENaC at the apical plasma membrane and elevated cytosolic cAMP levels. The effects of PGE2 and vasopressin were nonadditive, indicating similar signaling cascades. Exposing mCCDcl1 cells to aldosterone caused a much slower (∼2 h) increase of the amiloride-sensitive ISC. Interestingly, the rapid effect of PGE2 was preserved even after aldosterone stimulation. Furthermore, application of arachidonic acid also increased the amiloride-sensitive ISC involving basolateral EP4 receptors. Exposure to arachidonic acid resulted in elevated PGE2 in the basolateral medium in a cyclooxygenase 1 (COX-1)-dependent manner. These data suggest that in the cortical collecting duct, locally produced and secreted PGE2 can stimulate ENaC-mediated transepithelial sodium transport.Publisher PDFPeer reviewe

    Stereotactic radiotherapy in the treatment of brain metastases

    Get PDF
    This thematic review is part of a larger, comparative dosimetric analysis of the evaluation of treatment plans created by different modulated intensity irradiation, which is delivered by means a linear accelerator for the treatment of multiple metastases in the brain. There is currently no consensus as to which method is dosimetrically better. A further study will be aimed at determining the dosimetric advantages of each irradiation technique to introduce additional certainty into the planning process

    Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment

    Get PDF
    Background: LiCoO2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 degrees C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO2 ( HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li+) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Results: Several new single source precursors containing lithium (Li+) and cobalt (Co2+) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 degrees C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our - LiCoO2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Conclusions: Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO2 have faster kinetics for Li+ insertion/extraction compared to microparticles. Overall, nano-sized - LiCoO2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles
    corecore