9 research outputs found

    Path tracing multivue adaptatif

    Get PDF
    International audienceRendering photo-realistic image sequences using path tracing and Monte Carlo integration often requires sampling a large number of paths to get converged results. In the context of rendering multiple views or animated sequences, such sampling can be highly redundant. Several methods have been developed to share sampled paths between spatially or temporarily similar views. However, such sharing is challenging since it can lead to bias in the final images. Our contribution is a Monte Carlo sampling technique which generates paths, taking into account several cameras. First, we sample the scene from all the cameras to generate hit points. Then, an importance sampling technique generates bouncing directions which are shared by a subset of cameras. This set of hit points and bouncing directions is then used within a regular path tracing solution. For animated scenes, paths remain valid for a fixed time only, but sharing can still occur between cameras as long as their exposure time intervals overlap. We show that our technique generates less noise than regular path tracing and does not introduce noticeable bias.Le rendu de séquences d'images photoréalistes en lancer de rayons nécessite souvent l'échantillonnage d'un grand nombre de chemins pour obtenir des résultats convergés. Dans le contexte du rendu multi-vue ou de séquences animées, cet échantillonnage peut être redondant. Plusieurs méthodes ont été développées pour réutiliser des chemins échantillonnés entre des vues proches spatialement ou temporellement. Cependant, un telle réutilisation est complexe car elle peut mener à du biais dans les images. Notre contribution est une technique d'échantillonnage qui génère des chemins en prenant en compte plusieurs caméras. Tout d'abord, nous échantillonnons la scène depuis toutes les caméras pour générer des points visibles. Ensuite, nous générons des directions par importance qui sont partagées par un sous-ensemble de caméras. Cet ensemble de points et de directions est ensuite utilisé dans une solution de lancer de rayons classique. Pour les scènes animées, les chemins ne sont réutilisables qu'à temps fixe, mais un partage peut toujours avoir lieu entre les caméras si leurs intervalles d'exposition se recouvrent. Notre technique génère moins de bruit que le path tracing classique à temps de calcul équivalent et n’introduit pas de biais perceptible

    Estimateurs auto-normalisés et construction simultanée de chemins pour le rendu multi-caméra

    No full text
    La simulations du transport de lumière physiquement réaliste est progressivement devenue l'approche standard dans l'industrie de la production d'images. L'algorithme de Path Tracing et ses variantes sont utilisés pour leur capacité à simuler des phénomènes d'éclairage complexe. Cependant, ces simulations nécessitent d'explorer l'ensemble des chemins reliant une source lumineuse au capteur de la caméra. La construction de ces chemins est un processus séquentiel complexe et il est couvent nécéssaire de construire et évaluer un très grand nombre de chemins pour atteindre des niveaux de bruit acceptables dans les images. Ceci est encore plus problématique lorsque l'on ajoute des effets de production tels que le flou de mouvement, la profondeur de champ et le rendu volumétrique. Un autre aspect important est que nous devons souvent calculer plusieurs images d'une même scène, par exemple lors du rendu de paires stéréo ; d'images lenticulaires, d'images de champs lumineux et de stéréogrammes holographiques pour visualiser plusieurs points de vue ; de trajectoires de caméra animées pour les visites virtuelles ou le rendu de séquences animées. Dans cette thèse, notre objectif est d'accélérer le rendu de plusieurs points de vue lors d'une même simulation en exploitant la cohérence entre les caméras. Ceci représente un défi car les méthodes existantes pour réutiliser les chemins entre plusieurs vues introduisent du biais visible dans les images, et ne sont pas adaptées pour tous les effets de production, les matériaux, les surfaces et les volumes qu'une scène peut inclure. Nous développons un nouvel algorithme unidirectionnel pour rendre conjointement plusieurs images d'une meme scène. Nous introduisons de nouvelles méthodes pour transformer et réutiliser les chemins d'une caméra à l'autre en présence de milieux participants et pour générer des sous-chemins qui contribuent le mieux à un sous-ensemble d'observateur, ainsi qu'un un nouvel estimateur de Monte Carlo pour combine correctement les contributions de ces chemins. Nous démontrons sur plusieurs scènes comprenant de la géométrie complexe, des matériaux complexes, des milieux participants et des effets de production que cette méthode réduit efficacement le bruit par rapport aux calculs image par image à temps de calcul équivalent.Physically based light transport simulations have gradually become the standard approach in the image production industry. The Path Tracing algorithm and its variants are used for their ability to simulate complex lighting phenomena. However, these simulations require the exploration of all the paths connecting a light source to the camera sensor. The construction of these paths is a complex sequential process and it is often necessary to construct and evaluate a very large number of paths to achieve acceptable noise levels in the images. This is even more problematic when adding production effects such as motion blur, depth of field and volumetric rendering. Another important aspect is that we often need to compute multiple images of the same scene, for example when rendering stereo pairs; lenticular images, light field images and holographic stereograms to visualize multiple points of view; animated camera trajectories for virtual tours or rendering motion sequences. In this thesis, our goal is to accelerate the rendering of multiple viewpoints in a single simulation by exploiting the coherence between cameras. This is challenging because existing methods for reusing paths between multiple views may introduce visible bias into the images, and are not suitable for all the production effects, materials, surfaces and volumes that a scene may include. We develop a new unidirectional algorithm to jointly render multiple images of the same scene at once. We introduce new methods for transforming and reusing paths from one camera to another in the presence of participating media and for generating sub-paths that best contribute to a subset of observers, as well as a new Monte Carlo estimator for combining the contributions of these paths with low variance. We demonstrate on several scenes including complex geometry, complex materials, participating media, and production effects that this method effectively reduces noise compared to frame-by-frame computations at equivalent computation time

    Estimateurs auto-normalisés et construction simultanée de chemins pour le rendu multi-caméra

    No full text
    Physically based light transport simulations have gradually become the standard approach in the image production industry. The Path Tracing algorithm and its variants are used for their ability to simulate complex lighting phenomena. However, these simulations require the exploration of all the paths connecting a light source to the camera sensor. The construction of these paths is a complex sequential process and it is often necessary to construct and evaluate a very large number of paths to achieve acceptable noise levels in the images. This is even more problematic when adding production effects such as motion blur, depth of field and volumetric rendering. Another important aspect is that we often need to compute multiple images of the same scene, for example when rendering stereo pairs; lenticular images, light field images and holographic stereograms to visualize multiple points of view; animated camera trajectories for virtual tours or rendering motion sequences. In this thesis, our goal is to accelerate the rendering of multiple viewpoints in a single simulation by exploiting the coherence between cameras. This is challenging because existing methods for reusing paths between multiple views may introduce visible bias into the images, and are not suitable for all the production effects, materials, surfaces and volumes that a scene may include. We develop a new unidirectional algorithm to jointly render multiple images of the same scene at once. We introduce new methods for transforming and reusing paths from one camera to another in the presence of participating media and for generating sub-paths that best contribute to a subset of observers, as well as a new Monte Carlo estimator for combining the contributions of these paths with low variance. We demonstrate on several scenes including complex geometry, complex materials, participating media, and production effects that this method effectively reduces noise compared to frame-by-frame computations at equivalent computation time.La simulations du transport de lumière physiquement réaliste est progressivement devenue l'approche standard dans l'industrie de la production d'images. L'algorithme de Path Tracing et ses variantes sont utilisés pour leur capacité à simuler des phénomènes d'éclairage complexe. Cependant, ces simulations nécessitent d'explorer l'ensemble des chemins reliant une source lumineuse au capteur de la caméra. La construction de ces chemins est un processus séquentiel complexe et il est couvent nécéssaire de construire et évaluer un très grand nombre de chemins pour atteindre des niveaux de bruit acceptables dans les images. Ceci est encore plus problématique lorsque l'on ajoute des effets de production tels que le flou de mouvement, la profondeur de champ et le rendu volumétrique. Un autre aspect important est que nous devons souvent calculer plusieurs images d'une même scène, par exemple lors du rendu de paires stéréo ; d'images lenticulaires, d'images de champs lumineux et de stéréogrammes holographiques pour visualiser plusieurs points de vue ; de trajectoires de caméra animées pour les visites virtuelles ou le rendu de séquences animées. Dans cette thèse, notre objectif est d'accélérer le rendu de plusieurs points de vue lors d'une même simulation en exploitant la cohérence entre les caméras. Ceci représente un défi car les méthodes existantes pour réutiliser les chemins entre plusieurs vues introduisent du biais visible dans les images, et ne sont pas adaptées pour tous les effets de production, les matériaux, les surfaces et les volumes qu'une scène peut inclure. Nous développons un nouvel algorithme unidirectionnel pour rendre conjointement plusieurs images d'une meme scène. Nous introduisons de nouvelles méthodes pour transformer et réutiliser les chemins d'une caméra à l'autre en présence de milieux participants et pour générer des sous-chemins qui contribuent le mieux à un sous-ensemble d'observateur, ainsi qu'un un nouvel estimateur de Monte Carlo pour combine correctement les contributions de ces chemins. Nous démontrons sur plusieurs scènes comprenant de la géométrie complexe, des matériaux complexes, des milieux participants et des effets de production que cette méthode réduit efficacement le bruit par rapport aux calculs image par image à temps de calcul équivalent

    Estimateurs auto-normalisés et construction simultanée de chemins pour le rendu multi-caméra

    No full text
    Physically based light transport simulations have gradually become the standard approach in the image production industry. The Path Tracing algorithm and its variants are used for their ability to simulate complex lighting phenomena. However, these simulations require the exploration of all the paths connecting a light source to the camera sensor. The construction of these paths is a complex sequential process and it is often necessary to construct and evaluate a very large number of paths to achieve acceptable noise levels in the images. This is even more problematic when adding production effects such as motion blur, depth of field and volumetric rendering. Another important aspect is that we often need to compute multiple images of the same scene, for example when rendering stereo pairs; lenticular images, light field images and holographic stereograms to visualize multiple points of view; animated camera trajectories for virtual tours or rendering motion sequences. In this thesis, our goal is to accelerate the rendering of multiple viewpoints in a single simulation by exploiting the coherence between cameras. This is challenging because existing methods for reusing paths between multiple views may introduce visible bias into the images, and are not suitable for all the production effects, materials, surfaces and volumes that a scene may include. We develop a new unidirectional algorithm to jointly render multiple images of the same scene at once. We introduce new methods for transforming and reusing paths from one camera to another in the presence of participating media and for generating sub-paths that best contribute to a subset of observers, as well as a new Monte Carlo estimator for combining the contributions of these paths with low variance. We demonstrate on several scenes including complex geometry, complex materials, participating media, and production effects that this method effectively reduces noise compared to frame-by-frame computations at equivalent computation time.La simulations du transport de lumière physiquement réaliste est progressivement devenue l'approche standard dans l'industrie de la production d'images. L'algorithme de Path Tracing et ses variantes sont utilisés pour leur capacité à simuler des phénomènes d'éclairage complexe. Cependant, ces simulations nécessitent d'explorer l'ensemble des chemins reliant une source lumineuse au capteur de la caméra. La construction de ces chemins est un processus séquentiel complexe et il est couvent nécéssaire de construire et évaluer un très grand nombre de chemins pour atteindre des niveaux de bruit acceptables dans les images. Ceci est encore plus problématique lorsque l'on ajoute des effets de production tels que le flou de mouvement, la profondeur de champ et le rendu volumétrique. Un autre aspect important est que nous devons souvent calculer plusieurs images d'une même scène, par exemple lors du rendu de paires stéréo ; d'images lenticulaires, d'images de champs lumineux et de stéréogrammes holographiques pour visualiser plusieurs points de vue ; de trajectoires de caméra animées pour les visites virtuelles ou le rendu de séquences animées. Dans cette thèse, notre objectif est d'accélérer le rendu de plusieurs points de vue lors d'une même simulation en exploitant la cohérence entre les caméras. Ceci représente un défi car les méthodes existantes pour réutiliser les chemins entre plusieurs vues introduisent du biais visible dans les images, et ne sont pas adaptées pour tous les effets de production, les matériaux, les surfaces et les volumes qu'une scène peut inclure. Nous développons un nouvel algorithme unidirectionnel pour rendre conjointement plusieurs images d'une meme scène. Nous introduisons de nouvelles méthodes pour transformer et réutiliser les chemins d'une caméra à l'autre en présence de milieux participants et pour générer des sous-chemins qui contribuent le mieux à un sous-ensemble d'observateur, ainsi qu'un un nouvel estimateur de Monte Carlo pour combine correctement les contributions de ces chemins. Nous démontrons sur plusieurs scènes comprenant de la géométrie complexe, des matériaux complexes, des milieux participants et des effets de production que cette méthode réduit efficacement le bruit par rapport aux calculs image par image à temps de calcul équivalent

    Numerical modeling of current-voltage characteristics to extract transport properties of organic semiconductors

    No full text
    The current vs. voltage (I-V) characteristics of single crystal rubrene Organic Field-Effect Transistors (OFETs) and polycrystalline poly(p-phenylenevinylene) (PPV) films are modeled using the polaron transport theory presented in a previous work [A. F. Basile et al., J. Appl. Phys. 115, 244505 (2014)]. The model is first applied to rubrene OFETs, where transport is two-dimensional and is confined near the interface between the insulator and the organic semiconductor. By considering the effect of image charges in the insulator and by assuming a constant intrinsic mobility, we reproduce both the positive and the negative temperature dependences of the channel mobilities measured on OFETs having a gate dielectric and an air-gap insulator, respectively. In addition, we adapt this model to the three-dimensional transport in PPV films, characterized by effective mobilities which depend on temperature, charge density, and electric field. We show that the I-V characteristics of these materials can be matched by the numerical solution of the Poisson and drift-diffusion equations assuming a constant intrinsic mobility. The polaron binding energy can account for the thermally activated behavior of the I-V characteristics and for the increase of the effective mobility at high applied voltages. Therefore, this model enables to extract the intrinsic transport parameters of organic semiconductors, independent of the device structure, and of the measurement conditions. VC 2014 AIP Publishing LLC

    Volumetric Multi-View Rendering

    No full text
    International audienceRendering photo-realistic images using Monte Carlo path tracing often requires sampling a large number of paths to reach acceptable levels of noise. This is particularly the case when rendering participating media, that complexify light paths with multiple scattering events. Our goal is to accelerate the rendering of heterogeneous participating media by exploiting redundancy across views, for instance when rendering animated camera paths, motion blur in consecutive frames or multi-view images such as lenticular or light-field images. This poses a challenge as existing methods for sharing light paths across views cannot handle heterogeneous participating media and classical estimators are not optimal in this context. We address these issues by proposing three key ideas. First, we propose new volume shift mappings to transform light paths from one view to another within the recently introduced null-scattering framework, taking into account changes in density along the transformed path. Second, we generate a shared path suffix that best contributes to a subset of views, thus effectively reducing variance. Third, we introduce the multiple weighted importance sampling estimator that benefits from multiple importance sampling for combining sampling strategies, and from weighted importance sampling for reducing the variance due to non contributing strategies. We observed significant reuse when views largely overlap, with no visible bias and reduced variance compared to regular path tracing at equal time. Our method further readily integrates into existing volumetric path tracing pipelines

    Trap densities and transport properties of pentacene metal\u2013oxide\u2013semiconductor transistors: II\u2014Numerical modeling of dc characteristics

    No full text
    A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics

    Trap densities and transport properties of pentacene metal-oxide-semiconductor transistors. I. Analytical modeling of time-dependent characteristics

    No full text
    Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales

    Space Environment Effects on Flexible, Low-Voltage Organic Thin-Film Transistors

    No full text
    Organic electronic devices fabricated on flexible substrates are promising candidates for applications in environments where flexible, lightweight, and radiation hard materials are required. In this work, device parameters such as threshold voltage, charge mobility, and trap density of 13-bis­(triisopropylsilylethynyl)­pentacene (TIPS-pentacene)-based organic thin-film transistors (OTFTs) have been monitored for performing electrical measurements before and after irradiation by high-energy protons. The observed reduction of charge carrier mobility following irradiation can be only partially ascribed to the increased trap density. Indeed, we used other techniques to identify additional effects induced by proton irradiation in such devices. Atomic force microscopy reveals morphological defects occurring in the organic dielectric layer induced by the impinging protons, which, in turn, induce a strain on the TIPS-pentacene crystallites lying above. The effects of this strain are investigated by density functional theory simulations of two model structures, which describe the TIPS-pentacene crystalline films at equilibrium and under strain. The two different density of states distributions in the valence band have been correlated with the photocurrent spectra acquired before and after proton irradiation. We conclude that the degradation of the dielectric layer and the organic semiconductor sensitivity to strain are the two main phenomena responsible for the reduction of OTFT mobility after proton irradiation
    corecore