3,031 research outputs found
Digital Death: The Failures, Struggles and Discourses of the Social Media Spectacle
Celebrities have always capitalized upon various media to give voice and substance to their own mute causes. From Live Aid to PBS fundraisers, they have utilized their public personae to support the downtrodden, sick and underprivileged. However, in December of 2010, when Alicia Keys and over a dozen other celebrities banded together to raise money for World AIDS Day by eradicating their Twitter and other social media profiles, their much-hyped campaign to raise one million dollars fell short of its goal by nearly half. This paper explores the discourses surrounding the Digital Death Pseudo-Event, and the effects of the disjuncture between the real and digital self when the Celebrity Spectacle is moved from traditional media to the social sphere. Consumer awareness of that gulf ultimately precluded the Digital Death campaign\u27s ability to succeed, not only as a fundraiser, but also as a media spectacle. Ultimately, such revelations point to the inherent natures of social media to promote a certain type of celebrity spectacle that does not conform uniformly to the celebrity of traditional media
The Maslov index and nondegenerate singularities of integrable systems
We consider integrable Hamiltonian systems in R^{2n} with integrals of motion
F = (F_1,...,F_n) in involution. Nondegenerate singularities are critical
points of F where rank dF = n-1 and which have definite linear stability. The
set of nondegenerate singularities is a codimension-two symplectic submanifold
invariant under the flow. We show that the Maslov index of a closed curve is a
sum of contributions +/- 2 from the nondegenerate singularities it is encloses,
the sign depending on the local orientation and stability at the singularities.
For one-freedom systems this corresponds to the well-known formula for the
Poincar\'e index of a closed curve as the oriented difference between the
number of elliptic and hyperbolic fixed points enclosed. We also obtain a
formula for the Liapunov exponent of invariant (n-1)-dimensional tori in the
nondegenerate singular set. Examples include rotationally symmetric n-freedom
Hamiltonians, while an application to the periodic Toda chain is described in a
companion paper.Comment: 27 pages, 1 figure; published versio
Probing the C-H Activation of Linear and Cyclic Ethers at (PNP)Ir
Interaction of the amido/bis(phosphine)-supported (PNP)Ir fragment with a series of linear and cyclic ethers is shown to afford, depending on substrate, products of α,α-dehydrogenation (carbenes), α,β-dehydrogenation (vinyl ethers), or decarbonylation. While carbenes are exclusively obtained from tert-amyl methyl ether, sec-butyl methyl ether (SBME), n-butyl methyl ether (NBME), and tetrahydrofuran (THF), vinyl ethers or their adducts are observed upon reaction with diethyl ether and 1,4-dioxane. Decarbonylation occurs upon interaction of (PNP)Ir with benzyl methyl ether, and a mechanism is proposed for this unusual transformation, which occurs via a series of C−H, C−O, and C−C bond cleavage events. The intermediates characterized for several of these reactions as well as the α,α-dehydrogenation of tert-butyl methyl ether (MTBE) are used to outline a reaction pathway for the generation of PNP-supported iridium(I) carbene complexes, and it is shown that the long-lived, observable intermediates are substrate-dependent and differ for the related cases of MTBE and THF. Taken together, these findings highlight the variety of pathways utilized by the electron-rich, unsaturated (PNP)Ir fragment to stabilize itself by transferring electron density to ethereal substrates through oxidative addition and/or the formation of π-acidic ligands
Slow epidemic extinction in populations with heterogeneous infection rates
We explore how heterogeneity in the intensity of interactions between people
affects epidemic spreading. For that, we study the
susceptible-infected-susceptible model on a complex network, where a link
connecting individuals and is endowed with an infection rate
proportional to the intensity of their contact
, with a distribution taken from face-to-face experiments
analyzed in Cattuto (PLoS ONE 5, e11596, 2010). We find an extremely
slow decay of the fraction of infected individuals, for a wide range of the
control parameter . Using a distribution of width we identify two
large regions in the space with anomalous behaviors, which are
reminiscent of rare region effects (Griffiths phases) found in models with
quenched disorder. We show that the slow approach to extinction is caused by
isolated small groups of highly interacting individuals, which keep epidemic
alive for very long times. A mean-field approximation and a percolation
approach capture with very good accuracy the absorbing-active transition line
for weak (small ) and strong (large ) disorder, respectively
Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli
Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens
Single Wall Nanotubes: Atomic Like Behaviour and Microscopic Approach
Recent experiments about the low temperature behaviour of a Single Wall
Carbon Nanotube (SWCNT) showed typical Coulomb Blockade (CB) peaks in the zero
bias conductance and allowed us to investigate the energy levels of interacting
electrons. Other experiments confirmed the theoretical prediction about the
crucial role which the long range nature of the Coulomb interaction plays in
the correlated electronic transport through a SWCNT with two intramolecular
tunneling barriers. In order to investigate the effects on low dimensional
electron systems due to the range of electron electron repulsion, we introduce
a model for the interaction which interpolates well between short and long
range regimes. Our results could be compared with experimental data obtained in
SWCNTs and with those obtained for an ideal vertical Quantum Dot (QD).
For a better understanding of some experimental results we also discuss how
defects and doping can break some symmetries of the bandstructure of a SWCNT.Comment: 8 pages, 4 figure
Superposition of photon- and phonon- assisted tunneling in coupled quantum dots
We report on electron transport through an artificial molecule formed by two
tunnel coupled quantum dots, which are laterally confined in a two-dimensional
electron system of an AlGaAs/GaAs heterostructure. Coherent
molecular states in the coupled dots are probed by photon-assisted tunneling
(PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between
the microwave photons and the molecular states. Below 8 GHz, a pronounced
superposition of phonon- and photon-assisted tunneling is observed. Coherent
superposition of molecular states persists under excitation of acoustic
phonons.Comment: 5 pages, 4 figure
Magnetic Field Dependence of the Level Spacing of a Small Electron Droplet
The temperature dependence of conductance resonances is used to measure the
evolution with the magnetic field of the average level spacing
of a droplet containing electrons created by lateral confinement of a
two-dimensional electron gas in GaAs. becomes very small (eV) near two critical magnetic fields at which the symmetry of the
droplet changes and these decreases of are predicted by
Hartree-Fock (HF) for charge excitations. Between the two critical fields,
however, the largest measured eV is an order of
magnitude smaller than predicted by HF but comparable to the Zeeman splitting
at this field, which suggests that the spin degrees of freedom are important.
PACS: 73.20.Dx, 73.20.MfComment: 11 pages of text in RevTeX, 4 figures in Postscript (files in the
form of uuencoded compressed tar file
- …
