3,031 research outputs found

    Digital Death: The Failures, Struggles and Discourses of the Social Media Spectacle

    Get PDF
    Celebrities have always capitalized upon various media to give voice and substance to their own mute causes. From Live Aid to PBS fundraisers, they have utilized their public personae to support the downtrodden, sick and underprivileged. However, in December of 2010, when Alicia Keys and over a dozen other celebrities banded together to raise money for World AIDS Day by eradicating their Twitter and other social media profiles, their much-hyped campaign to raise one million dollars fell short of its goal by nearly half. This paper explores the discourses surrounding the Digital Death Pseudo-Event, and the effects of the disjuncture between the real and digital self when the Celebrity Spectacle is moved from traditional media to the social sphere. Consumer awareness of that gulf ultimately precluded the Digital Death campaign\u27s ability to succeed, not only as a fundraiser, but also as a media spectacle. Ultimately, such revelations point to the inherent natures of social media to promote a certain type of celebrity spectacle that does not conform uniformly to the celebrity of traditional media

    The Maslov index and nondegenerate singularities of integrable systems

    Full text link
    We consider integrable Hamiltonian systems in R^{2n} with integrals of motion F = (F_1,...,F_n) in involution. Nondegenerate singularities are critical points of F where rank dF = n-1 and which have definite linear stability. The set of nondegenerate singularities is a codimension-two symplectic submanifold invariant under the flow. We show that the Maslov index of a closed curve is a sum of contributions +/- 2 from the nondegenerate singularities it is encloses, the sign depending on the local orientation and stability at the singularities. For one-freedom systems this corresponds to the well-known formula for the Poincar\'e index of a closed curve as the oriented difference between the number of elliptic and hyperbolic fixed points enclosed. We also obtain a formula for the Liapunov exponent of invariant (n-1)-dimensional tori in the nondegenerate singular set. Examples include rotationally symmetric n-freedom Hamiltonians, while an application to the periodic Toda chain is described in a companion paper.Comment: 27 pages, 1 figure; published versio

    Probing the C-H Activation of Linear and Cyclic Ethers at (PNP)Ir

    Get PDF
    Interaction of the amido/bis(phosphine)-supported (PNP)Ir fragment with a series of linear and cyclic ethers is shown to afford, depending on substrate, products of α,α-dehydrogenation (carbenes), α,β-dehydrogenation (vinyl ethers), or decarbonylation. While carbenes are exclusively obtained from tert-amyl methyl ether, sec-butyl methyl ether (SBME), n-butyl methyl ether (NBME), and tetrahydrofuran (THF), vinyl ethers or their adducts are observed upon reaction with diethyl ether and 1,4-dioxane. Decarbonylation occurs upon interaction of (PNP)Ir with benzyl methyl ether, and a mechanism is proposed for this unusual transformation, which occurs via a series of C−H, C−O, and C−C bond cleavage events. The intermediates characterized for several of these reactions as well as the α,α-dehydrogenation of tert-butyl methyl ether (MTBE) are used to outline a reaction pathway for the generation of PNP-supported iridium(I) carbene complexes, and it is shown that the long-lived, observable intermediates are substrate-dependent and differ for the related cases of MTBE and THF. Taken together, these findings highlight the variety of pathways utilized by the electron-rich, unsaturated (PNP)Ir fragment to stabilize itself by transferring electron density to ethereal substrates through oxidative addition and/or the formation of π-acidic ligands

    Slow epidemic extinction in populations with heterogeneous infection rates

    Get PDF
    We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals ii and jj is endowed with an infection rate βij=λwij\beta_{ij} = \lambda w_{ij} proportional to the intensity of their contact wijw_{ij}, with a distribution P(wij)P(w_{ij}) taken from face-to-face experiments analyzed in Cattuto et  al.et\;al. (PLoS ONE 5, e11596, 2010). We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter λ\lambda. Using a distribution of width aa we identify two large regions in the aλa-\lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemic alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small aa) and strong (large aa) disorder, respectively

    Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens

    Single Wall Nanotubes: Atomic Like Behaviour and Microscopic Approach

    Full text link
    Recent experiments about the low temperature behaviour of a Single Wall Carbon Nanotube (SWCNT) showed typical Coulomb Blockade (CB) peaks in the zero bias conductance and allowed us to investigate the energy levels of interacting electrons. Other experiments confirmed the theoretical prediction about the crucial role which the long range nature of the Coulomb interaction plays in the correlated electronic transport through a SWCNT with two intramolecular tunneling barriers. In order to investigate the effects on low dimensional electron systems due to the range of electron electron repulsion, we introduce a model for the interaction which interpolates well between short and long range regimes. Our results could be compared with experimental data obtained in SWCNTs and with those obtained for an ideal vertical Quantum Dot (QD). For a better understanding of some experimental results we also discuss how defects and doping can break some symmetries of the bandstructure of a SWCNT.Comment: 8 pages, 4 figure

    Superposition of photon- and phonon- assisted tunneling in coupled quantum dots

    Full text link
    We report on electron transport through an artificial molecule formed by two tunnel coupled quantum dots, which are laterally confined in a two-dimensional electron system of an Alx_xGa1x_{1-x}As/GaAs heterostructure. Coherent molecular states in the coupled dots are probed by photon-assisted tunneling (PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between the microwave photons and the molecular states. Below 8 GHz, a pronounced superposition of phonon- and photon-assisted tunneling is observed. Coherent superposition of molecular states persists under excitation of acoustic phonons.Comment: 5 pages, 4 figure

    Magnetic Field Dependence of the Level Spacing of a Small Electron Droplet

    Full text link
    The temperature dependence of conductance resonances is used to measure the evolution with the magnetic field of the average level spacing Δϵ\Delta\epsilon of a droplet containing 30\sim 30 electrons created by lateral confinement of a two-dimensional electron gas in GaAs. Δϵ\Delta\epsilon becomes very small (<30μ< 30\mueV) near two critical magnetic fields at which the symmetry of the droplet changes and these decreases of Δϵ\Delta\epsilon are predicted by Hartree-Fock (HF) for charge excitations. Between the two critical fields, however, the largest measured Δϵ=100μ\Delta\epsilon= 100\mueV is an order of magnitude smaller than predicted by HF but comparable to the Zeeman splitting at this field, which suggests that the spin degrees of freedom are important. PACS: 73.20.Dx, 73.20.MfComment: 11 pages of text in RevTeX, 4 figures in Postscript (files in the form of uuencoded compressed tar file
    corecore