Recent experiments about the low temperature behaviour of a Single Wall
Carbon Nanotube (SWCNT) showed typical Coulomb Blockade (CB) peaks in the zero
bias conductance and allowed us to investigate the energy levels of interacting
electrons. Other experiments confirmed the theoretical prediction about the
crucial role which the long range nature of the Coulomb interaction plays in
the correlated electronic transport through a SWCNT with two intramolecular
tunneling barriers. In order to investigate the effects on low dimensional
electron systems due to the range of electron electron repulsion, we introduce
a model for the interaction which interpolates well between short and long
range regimes. Our results could be compared with experimental data obtained in
SWCNTs and with those obtained for an ideal vertical Quantum Dot (QD).
For a better understanding of some experimental results we also discuss how
defects and doping can break some symmetries of the bandstructure of a SWCNT.Comment: 8 pages, 4 figure