38 research outputs found

    Maternal effects shape the seed mycobiome in Quercus petraea

    Get PDF
    The tree seed mycobiome has received little attention despite its potential role in forest regeneration and health. The aim of the present study was to analyze the processes shaping the composition of seed fungal communities in natural forests as seeds transition from the mother plant to the ground for establishment. We used metabarcoding approaches and confocal microscopy to analyze the fungal communities of seeds collected in the canopy and on the ground in four natural populations of sessile oak (Quercus petraea). Ecological processes shaping the seed mycobiome were inferred using joint species distribution models. Fungi were present in seed internal tissues, including the embryo. The seed mycobiome differed among oak populations and trees within the same population. Its composition was largely influenced by the mother, with weak significant environmental influences. The models also revealed several probable interactions among fungal pathogens and mycoparasites. Our results demonstrate that maternal effects, environmental filtering and biotic interactions all shape the seed mycobiome of sessile oak. They provide a starting point for future research aimed at understanding how maternal genes and environments interact to control the vertical transmission of fungal species that could then influence seed dispersal and germination, and seedling recruitment.Peer reviewe

    Planta de producciĂł d'Ă cid oxĂ lic en forma de dihidrat a partir d'etilenglicol

    Get PDF
    La present memĂČria correspon al treball de fi de grau d'Enginyeria QuĂ­mica de la promociĂł 2021. En aquest s'hi aborden els diversos aspectes que concerneixen un projecte d'enginyeria bĂ sica, que tĂ© per objectiu el disseny d'una planta per a la producciĂł d'Ă cid oxĂ lic en forma de dihidrat amb una puresa mĂ­nima del 99,5%, i amb una capacitat mĂ­nima de 32.000 T/any. Al llarg del treball s'hi desenvolupa el disseny dels equips que conformaran el procĂ©s i les operacions auxiliars, s'hi descriuen les etapes de procĂ©s que s'estableixen per a tractar els efluents lĂ­quids i gasosos fins a complir-se la normativa vigent en matĂšria de contaminaciĂł ambiental. AixĂ­ mateix, es projecta el disseny de les canonades i la selecciĂł i distribuciĂł de bombes, compressors, vĂ lvules i accessoris. De la mateixa manera, s'aborda un estudi de mĂșltiples derivades entorn a la seguretat a la planta, realitzant-se una anĂ lisis de riscos HAZOP i una zonificaciĂł ATEX, entre d'altres. Finalment, es fa un estudi i discussiĂł sobre la viabilitat econĂČmica del projecte proposat, com un actor mĂ©s en el mercat global de l'Ă cid oxĂ lic. La planta que Ă©s objecte de disseny s'emplaça a TĂ rrega i es realitza un estudi de les variables demogrĂ fiques, econĂČmiques i climatolĂČgiques de la zona que juguin algun paper en l'elaboraciĂł del projecte

    Recurrent dissemination of SARS-CoV-2 through the Uruguayan–Brazilian border

    Get PDF
    Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∌1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan–Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May–July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world

    Functions, transmission and emission of the canopy microbiota

    No full text
    Les arbres interagissent avec des communautĂ©s microbiennes diversifiĂ©es qui influencent leur fitness et le fonctionnement des Ă©cosystĂšmes terrestres. Contrairement aux micro-organismes associĂ©s aux racines et au sol, les micro-organismes qui colonisent la canopĂ©e forestiĂšre sont encore mal connus. L’objectif de cette thĂšse est de mieux comprendre les fonctions des micro-organismes associĂ©s aux parties aĂ©riennes des arbres (feuilles, tiges, graines) ainsi que leur dynamique de transmission verticale (de l’arbre Ă  ses descendants) et horizontale (Ă©mission de l’arbre vers l’atmosphĂšre), en combinant des analyses d’écologie molĂ©culaire et d’écophysiologie vĂ©gĂ©tale. Le premier chapitre [P1] montre une stratification verticale des communautĂ©s fongiques et bactĂ©riennes foliaires au sein de la canopĂ©e du hĂȘtre (Fagus sylvatica). Cette stratification est plus marquĂ©e chez les micro-organismes Ă©piphytes que chez les endophytes, elle s’attĂ©nue au cours de la saison vĂ©gĂ©tative chez les bactĂ©ries et semble ĂȘtre liĂ©e Ă  la morphologie plutĂŽt qu’à la physiologie foliaire. La stratification verticale des fonctions microbiennes est en cours d’analyse. Le deuxiĂšme chapitre [P2] met en Ă©vidence la prĂ©sence de champignons dans les tissus internes des glands du chĂȘne sessile (Quercus petraea), y compris l’embryon, suggĂ©rant que le microbiote peut ĂȘtre transmis verticalement de l’arbre mĂšre Ă  ses descendants et influencer la rĂ©gĂ©nĂ©ration forestiĂšre. Les glands contiennent en particulier plusieurs espĂšces de champignons pathogĂšnes, en association avec leurs mycoparasites. Ces communautĂ©s fongiques varient significativement en fonction de l’arbre mĂšre et de la population de chĂȘne. Enfin, le troisiĂšme chapitre [P3] teste un prototype de mesure des flux d’émissions bactĂ©riennes au-dessus des couverts vĂ©gĂ©taux. Il montre que la moitiĂ© des espĂšces capturĂ©es dans l’atmosphĂšre est prĂ©sente sur la surface des feuilles et suggĂšre que la composition des bioaĂ©rosols est fortement influencĂ©e par la plante cultivĂ©e dominante localement, la vigne (Vitis Vinifera). Des mesures complĂ©mentaires, incluant une plus large gamme d’habitats forestiers et non-forestiers, devront ĂȘtre rĂ©alisĂ©es pour mieux cerner l’origine des Ă©missions, qui sont connues pour influencer le cycle de l’eau. Cette thĂšse apporte donc des Ă©lĂ©ments pour modĂ©liser la dynamique et l’évolution du systĂšme arbre-microbiote-atmosphĂšre, qu’il conviendra de renforcer et d’intĂ©grer aux connaissances sur le systĂšme sol afin de rĂ©pondre aux dĂ©fis posĂ©s par le changement climatiqueTrees interact with diverse microbial communities that influence their fitness and the functioning of terrestrial ecosystems. Unlike microorganisms associated with roots and soil, microorganisms that colonize the forest canopy are still poorly understood. The objective of this thesis is to better understand the functions of microorganisms associated with the aerial parts of trees (leaves, stems, seeds) as well as their vertical (from the plant to its offspring) and horizontal (emission from the plant to the atmosphere) transmission dynamics, by combining molecular ecology and plant ecophysiology analyses. The first chapter [P1] shows a vertical stratification of fungal and foliar bacterial communities within the beech canopy (Fagus sylvatica). This stratification is more pronounced for epiphytic microorganisms than for endophytes. It also decreases during the growing season in bacteria and appears to be related to morphology rather than foliar physiology. Vertical stratification of microbial functions is being analyzed. The second chapter [P2] highlights the presence of fungi in the internal tissues of the acorns of sessile oak (Quercus petraea), including the embryo, suggesting that the microbiota can be transmitted vertically from the mother tree to its offsprings and influence forest regeneration. Acorns contain in particular several fungal pathogens, in association with their mycoparasites. These fungal communities vary significantly depending on the mother tree and the oak population. Finally, the third chapter [P3] tests a prototype for measuring bacterial emission fluxes over plant cover. It shows that half of the species captured in the atmosphere are present on the leaf surface and suggests that the composition of bioaerosols is strongly influenced by the locally dominant cultivated plant, the grapevine (Vitis vinifera). Complementary measures, including a wider range of forest and non-forestry habitats, will have to be carried out to better understand the origin of emissions, which are known to influence the water cycle. This thesis therefore provides elements for modelling the dynamics and evolution of the tree-microbiota-atmosphere system, which will need to be strengthened and integrated into knowledge of the soil system in order to respond to the challenges raised by climate chang

    Fonctions, transmission et émission du microbiote de la canopée.

    No full text
    Trees interact with diverse microbial communities that influence their fitness and the functioning of terrestrial ecosystems. Unlike microorganisms associated with roots and soil, microorganisms that colonize the forest canopy are still poorly understood. The objective of this thesis is to better understand the functions of microorganisms associated with the aerial parts of trees (leaves, stems, seeds) as well as their vertical (from the plant to its offspring) and horizontal (emission from the plant to the atmosphere) transmission dynamics, by combining molecular ecology and plant ecophysiology analyses. The first chapter [P1] shows a vertical stratification of fungal and foliar bacterial communities within the beech canopy (Fagus sylvatica). This stratification is more pronounced for epiphytic microorganisms than for endophytes. It also decreases during the growing season in bacteria and appears to be related to morphology rather than foliar physiology. Vertical stratification of microbial functions is being analyzed. The second chapter [P2] highlights the presence of fungi in the internal tissues of the acorns of sessile oak (Quercus petraea), including the embryo, suggesting that the microbiota can be transmitted vertically from the mother tree to its offsprings and influence forest regeneration. Acorns contain in particular several fungal pathogens, in association with their mycoparasites. These fungal communities vary significantly depending on the mother tree and the oak population. Finally, the third chapter [P3] tests a prototype for measuring bacterial emission fluxes over plant cover. It shows that half of the species captured in the atmosphere are present on the leaf surface and suggests that the composition of bioaerosols is strongly influenced by the locally dominant cultivated plant, the grapevine (Vitis vinifera). Complementary measures, including a wider range of forest and non-forestry habitats, will have to be carried out to better understand the origin of emissions, which are known to influence the water cycle. This thesis therefore provides elements for modelling the dynamics and evolution of the tree-microbiota-atmosphere system, which will need to be strengthened and integrated into knowledge of the soil system in order to respond to the challenges raised by climate changeLes arbres interagissent avec des communautĂ©s microbiennes diversifiĂ©es qui influencent leur fitness et le fonctionnement des Ă©cosystĂšmes terrestres. Contrairement aux micro-organismes associĂ©s aux racines et au sol, les micro-organismes qui colonisent la canopĂ©e forestiĂšre sont encore mal connus. L’objectif de cette thĂšse est de mieux comprendre les fonctions des micro-organismes associĂ©s aux parties aĂ©riennes des arbres (feuilles, tiges, graines) ainsi que leur dynamique de transmission verticale (de l’arbre Ă  ses descendants) et horizontale (Ă©mission de l’arbre vers l’atmosphĂšre), en combinant des analyses d’écologie molĂ©culaire et d’écophysiologie vĂ©gĂ©tale. Le premier chapitre [P1] montre une stratification verticale des communautĂ©s fongiques et bactĂ©riennes foliaires au sein de la canopĂ©e du hĂȘtre (Fagus sylvatica). Cette stratification est plus marquĂ©e chez les micro-organismes Ă©piphytes que chez les endophytes, elle s’attĂ©nue au cours de la saison vĂ©gĂ©tative chez les bactĂ©ries et semble ĂȘtre liĂ©e Ă  la morphologie plutĂŽt qu’à la physiologie foliaire. La stratification verticale des fonctions microbiennes est en cours d’analyse. Le deuxiĂšme chapitre [P2] met en Ă©vidence la prĂ©sence de champignons dans les tissus internes des glands du chĂȘne sessile (Quercus petraea), y compris l’embryon, suggĂ©rant que le microbiote peut ĂȘtre transmis verticalement de l’arbre mĂšre Ă  ses descendants et influencer la rĂ©gĂ©nĂ©ration forestiĂšre. Les glands contiennent en particulier plusieurs espĂšces de champignons pathogĂšnes, en association avec leurs mycoparasites. Ces communautĂ©s fongiques varient significativement en fonction de l’arbre mĂšre et de la population de chĂȘne. Enfin, le troisiĂšme chapitre [P3] teste un prototype de mesure des flux d’émissions bactĂ©riennes au-dessus des couverts vĂ©gĂ©taux. Il montre que la moitiĂ© des espĂšces capturĂ©es dans l’atmosphĂšre est prĂ©sente sur la surface des feuilles et suggĂšre que la composition des bioaĂ©rosols est fortement influencĂ©e par la plante cultivĂ©e dominante localement, la vigne (Vitis Vinifera). Des mesures complĂ©mentaires, incluant une plus large gamme d’habitats forestiers et non-forestiers, devront ĂȘtre rĂ©alisĂ©es pour mieux cerner l’origine des Ă©missions, qui sont connues pour influencer le cycle de l’eau. Cette thĂšse apporte donc des Ă©lĂ©ments pour modĂ©liser la dynamique et l’évolution du systĂšme arbre-microbiote-atmosphĂšre, qu’il conviendra de renforcer et d’intĂ©grer aux connaissances sur le systĂšme sol afin de rĂ©pondre aux dĂ©fis posĂ©s par le changement climatiqu

    Functions, transmission and emission of the canopy microbiota

    No full text
    Les arbres interagissent avec des communautĂ©s microbiennes diversifiĂ©es qui influencent leur fitness et le fonctionnement des Ă©cosystĂšmes terrestres. Contrairement aux micro-organismes associĂ©s aux racines et au sol, les micro-organismes qui colonisent la canopĂ©e forestiĂšre sont encore mal connus. L’objectif de cette thĂšse est de mieux comprendre les fonctions des micro-organismes associĂ©s aux parties aĂ©riennes des arbres (feuilles, tiges, graines) ainsi que leur dynamique de transmission verticale (de l’arbre Ă  ses descendants) et horizontale (Ă©mission de l’arbre vers l’atmosphĂšre), en combinant des analyses d’écologie molĂ©culaire et d’écophysiologie vĂ©gĂ©tale. Le premier chapitre [P1] montre une stratification verticale des communautĂ©s fongiques et bactĂ©riennes foliaires au sein de la canopĂ©e du hĂȘtre (Fagus sylvatica). Cette stratification est plus marquĂ©e chez les micro-organismes Ă©piphytes que chez les endophytes, elle s’attĂ©nue au cours de la saison vĂ©gĂ©tative chez les bactĂ©ries et semble ĂȘtre liĂ©e Ă  la morphologie plutĂŽt qu’à la physiologie foliaire. La stratification verticale des fonctions microbiennes est en cours d’analyse. Le deuxiĂšme chapitre [P2] met en Ă©vidence la prĂ©sence de champignons dans les tissus internes des glands du chĂȘne sessile (Quercus petraea), y compris l’embryon, suggĂ©rant que le microbiote peut ĂȘtre transmis verticalement de l’arbre mĂšre Ă  ses descendants et influencer la rĂ©gĂ©nĂ©ration forestiĂšre. Les glands contiennent en particulier plusieurs espĂšces de champignons pathogĂšnes, en association avec leurs mycoparasites. Ces communautĂ©s fongiques varient significativement en fonction de l’arbre mĂšre et de la population de chĂȘne. Enfin, le troisiĂšme chapitre [P3] teste un prototype de mesure des flux d’émissions bactĂ©riennes au-dessus des couverts vĂ©gĂ©taux. Il montre que la moitiĂ© des espĂšces capturĂ©es dans l’atmosphĂšre est prĂ©sente sur la surface des feuilles et suggĂšre que la composition des bioaĂ©rosols est fortement influencĂ©e par la plante cultivĂ©e dominante localement, la vigne (Vitis Vinifera). Des mesures complĂ©mentaires, incluant une plus large gamme d’habitats forestiers et non-forestiers, devront ĂȘtre rĂ©alisĂ©es pour mieux cerner l’origine des Ă©missions, qui sont connues pour influencer le cycle de l’eau. Cette thĂšse apporte donc des Ă©lĂ©ments pour modĂ©liser la dynamique et l’évolution du systĂšme arbre-microbiote-atmosphĂšre, qu’il conviendra de renforcer et d’intĂ©grer aux connaissances sur le systĂšme sol afin de rĂ©pondre aux dĂ©fis posĂ©s par le changement climatiqueTrees interact with diverse microbial communities that influence their fitness and the functioning of terrestrial ecosystems. Unlike microorganisms associated with roots and soil, microorganisms that colonize the forest canopy are still poorly understood. The objective of this thesis is to better understand the functions of microorganisms associated with the aerial parts of trees (leaves, stems, seeds) as well as their vertical (from the plant to its offspring) and horizontal (emission from the plant to the atmosphere) transmission dynamics, by combining molecular ecology and plant ecophysiology analyses. The first chapter [P1] shows a vertical stratification of fungal and foliar bacterial communities within the beech canopy (Fagus sylvatica). This stratification is more pronounced for epiphytic microorganisms than for endophytes. It also decreases during the growing season in bacteria and appears to be related to morphology rather than foliar physiology. Vertical stratification of microbial functions is being analyzed. The second chapter [P2] highlights the presence of fungi in the internal tissues of the acorns of sessile oak (Quercus petraea), including the embryo, suggesting that the microbiota can be transmitted vertically from the mother tree to its offsprings and influence forest regeneration. Acorns contain in particular several fungal pathogens, in association with their mycoparasites. These fungal communities vary significantly depending on the mother tree and the oak population. Finally, the third chapter [P3] tests a prototype for measuring bacterial emission fluxes over plant cover. It shows that half of the species captured in the atmosphere are present on the leaf surface and suggests that the composition of bioaerosols is strongly influenced by the locally dominant cultivated plant, the grapevine (Vitis vinifera). Complementary measures, including a wider range of forest and non-forestry habitats, will have to be carried out to better understand the origin of emissions, which are known to influence the water cycle. This thesis therefore provides elements for modelling the dynamics and evolution of the tree-microbiota-atmosphere system, which will need to be strengthened and integrated into knowledge of the soil system in order to respond to the challenges raised by climate chang

    Determinants of the vertical distribution of the phyllosphere differ between microbial groups and the epi- and endosphere

    No full text
    International audienceThe determinants of phyllosphere microbial communities are drawing much attention given their functional importance for their plant host fitness and health. Identifying these determinants remain challenging in neotropical forests, considering the diversity of the tree hosts and the strong vertical heterogeneity of abiotic condition within the canopy and at the scale of the leaf. Here, we studied fungal and bacterial communities living in the endophytic and epiphytic phyllosphere in tree species across vertical gradients, from the top of the canopy to the ground. We used DNA metabarcoding to characterize microbial communities and measured abiotic variables and foliar traits to characterize environmental heterogeneity. The assembly of fungal communities was more driven by deterministic processes as compared to bacteria, endo- and epiphytic communities being similarly shaped by the host identity and unmeasured parameters. In contrast, in bacterial communities, the relative importance of deterministic processes decreased from endophytic to epiphytic communities. Bacterial epi- and endophytic communities were partly and differently determined by the position within the canopy, the host identity and leaf traits, suggesting an effect of the vertical gradient and a stronger selection in the inner tissues of the leaf than on its surface. The tree host exerts a selective pressure on microbial communities but the leaf as microhabitat contributes also significantly to the assembly of microbial communities. Discrepancies exist between Fungi and Bacteria that probably reflect different life-history trait and ecological strategies, emphasizing the need to study these communities jointly if we are to fully understand plant-phyllosphere interactions
    corecore