8 research outputs found

    Lacking the floor of the mouth: a case study on Coptodon zillii (Cichlidae) from Shatt Al-Arab River, Basrah, Iraq

    Get PDF
    A single case of double mouth monstrosity was observed and examined in the cichlid fish Coptodon zillii collected from Shatt Al-Arab River, Basrah, Iraq on 15 May 2018. Instead, add the followings,"The floor of the mouth was ruptured, creating an extra mouth opening beneath the normal mouth. An injury may have caused this condition. Morphological examination indicates that the fish had lived with the abnormality for some time

    A transcriptomic analysis of diploid and triploid Atlantic salmon lenses with and without cataracts

    Get PDF
    To avoid negative environmental impacts of escapees and potential inter-breeding with wild populations, the Atlantic salmon farming industry has and continues to extensively test triploid fish that are sterile. However, they often show differences in performance, physiology, behavior and morphology compared to diploid fish, with increased prevalence of vertebral deformities and ocular cataracts as two of the most severe disorders. Here, we investigated the mechanisms behind the higher prevalence of cataracts in triploid salmon, by comparing the transcriptional patterns in lenses of diploid and triploid Atlantic salmon, with and without cataracts. We assembled and characterized the Atlantic salmon lens transcriptome and used RNA-seq to search for the molecular basis for cataract development in triploid fish. Transcriptional screening showed only modest differences in lens mRNA levels in diploid and triploid fish, with few uniquely expressed genes. In total, there were 165 differentially expressed genes (DEGs) between the cataractous diploid and triploid lens. Of these, most were expressed at lower levels in triploid fish. Differential expression was observed for genes encoding proteins with known function in the retina (phototransduction) and proteins associated with repair and compensation mechanisms. The results suggest a higher susceptibility to oxidative stress in triploid lenses, and that mechanisms connected to the ability to handle damaged proteins are differentially affected in cataractous lenses from diploid and triploid salmon.info:eu-repo/semantics/publishedVersio

    Ontogeny-Specific Skeletal Deformities in Atlantic Haddock Caused by Larval Oil Exposure

    Get PDF
    Bone deformities are one of the main effects of crude oil exposure in marine fish larvae. Craniofacial and jaw deformities, if severe enough, may restrict feeding and ultimately kill the developing larvae. This study aimed to examine the impact of dispersed crude oil on bone development in Atlantic haddock (Melanogrammus aeglefinus) larvae, a fish species spawning in areas approached for oil and gas exploration in the North Atlantic Ocean. Atlantic haddock larvae were exposed to low (60 μg oil/L), high (600 μg oil/L), or pulsed (0–600, average 60 μg oil/L over time) dispersed crude oil from 0 to 18 days post hatch (dph). Endpoints included survival and growth, bone integrity, and transcriptional parameters, which were assessed during (0–18 dph) and after exposure until the fish reached 8 months of age (243 dph). The results showed that the larvae in the high treatment group had reduction in growth at 2–19, 44, 134, and 243 dph. Craniofacial abnormalities were most severe at 8 and 19 dph. These deformities were not present at 44 dph, possibly because the larvae with deformed jaws failed to feed properly and died. Higher prevalence of spinal deformities was observed in haddocks that survived for 243 dph. Three genes encoding proteins critical for osteoblast function, sp7, postn, and col10a1, were downregulated in the high treatment group larvae. We discuss possible mechanisms of action in the developing larvae after oil exposure. In conclusion, this study shows that larval exposure to oil can potentially have long-term effects on growth and bone integrity in Atlantic haddock.publishedVersio

    Ontogeny-Specific Skeletal Deformities in Atlantic Haddock Caused by Larval Oil Exposure

    No full text
    Bone deformities are one of the main effects of crude oil exposure in marine fish larvae. Craniofacial and jaw deformities, if severe enough, may restrict feeding and ultimately kill the developing larvae. This study aimed to examine the impact of dispersed crude oil on bone development in Atlantic haddock (Melanogrammus aeglefinus) larvae, a fish species spawning in areas approached for oil and gas exploration in the North Atlantic Ocean. Atlantic haddock larvae were exposed to low (60 μg oil/L), high (600 μg oil/L), or pulsed (0–600, average 60 μg oil/L over time) dispersed crude oil from 0 to 18 days post hatch (dph). Endpoints included survival and growth, bone integrity, and transcriptional parameters, which were assessed during (0–18 dph) and after exposure until the fish reached 8 months of age (243 dph). The results showed that the larvae in the high treatment group had reduction in growth at 2–19, 44, 134, and 243 dph. Craniofacial abnormalities were most severe at 8 and 19 dph. These deformities were not present at 44 dph, possibly because the larvae with deformed jaws failed to feed properly and died. Higher prevalence of spinal deformities was observed in haddocks that survived for 243 dph. Three genes encoding proteins critical for osteoblast function, sp7, postn, and col10a1, were downregulated in the high treatment group larvae. We discuss possible mechanisms of action in the developing larvae after oil exposure. In conclusion, this study shows that larval exposure to oil can potentially have long-term effects on growth and bone integrity in Atlantic haddock

    Ontogeny-Specific Skeletal Deformities in Atlantic Haddock Caused by Larval Oil Exposure

    No full text
    Bone deformities are one of the main effects of crude oil exposure in marine fish larvae. Craniofacial and jaw deformities, if severe enough, may restrict feeding and ultimately kill the developing larvae. This study aimed to examine the impact of dispersed crude oil on bone development in Atlantic haddock (Melanogrammus aeglefinus) larvae, a fish species spawning in areas approached for oil and gas exploration in the North Atlantic Ocean. Atlantic haddock larvae were exposed to low (60 μg oil/L), high (600 μg oil/L), or pulsed (0–600, average 60 μg oil/L over time) dispersed crude oil from 0 to 18 days post hatch (dph). Endpoints included survival and growth, bone integrity, and transcriptional parameters, which were assessed during (0–18 dph) and after exposure until the fish reached 8 months of age (243 dph). The results showed that the larvae in the high treatment group had reduction in growth at 2–19, 44, 134, and 243 dph. Craniofacial abnormalities were most severe at 8 and 19 dph. These deformities were not present at 44 dph, possibly because the larvae with deformed jaws failed to feed properly and died. Higher prevalence of spinal deformities was observed in haddocks that survived for 243 dph. Three genes encoding proteins critical for osteoblast function, sp7, postn, and col10a1, were downregulated in the high treatment group larvae. We discuss possible mechanisms of action in the developing larvae after oil exposure. In conclusion, this study shows that larval exposure to oil can potentially have long-term effects on growth and bone integrity in Atlantic haddock
    corecore