189 research outputs found

    Results of the 2016 Indianapolis Biodiversity Survey, Marion County, Indiana

    Get PDF
    Surprising biodiversity can be found in cities, but urban habitats are understudied. We report on a bioblitz conducted primarily within a 24-hr period on September 16 and 17, 2016 in Indianapolis, Indiana, USA. The event focused on stretches of three waterways and their associated riparian habitat: Fall Creek (20.6 ha; 51 acres), Pleasant Run (23.5 ha; 58 acres), and Pogue’s Run (27.1 ha; 67 acres). Over 75 scientists, naturalists, students, and citizen volunteers comprised 14 different taxonomic teams. Five hundred ninety taxa were documented despite the rainy conditions. A brief summary of the methods and findings are presented here. Detailed maps of survey locations and inventory results are available on the Indiana Academy of Science website (https://www.indianaacademyofscience.org/)

    An assessment of the potential impacts of climate change on the freshwater habitats of Indiana, U.S.A.

    Get PDF
    Recent climate-driven, physico-chemical changes documented in aquatic systems throughout the world are expected to intensify in the future. Specifically, changes in key environmental attributes of aquatic systems, such as water quantity, clarity, temperatures, ice cover, seasonal flow regimes, external loading, and oxygen content, will undoubtedly have a broad set of direct and indirect ecological consequences. Some anticipated impacts may be similar across different aquatic ecosystems, while others may be system-specific. Here, we review the potential effects of climatic changes for different freshwater habitats within the state of Indiana, USA, a Midwestern state with diverse land and water features. Given this heterogeneity and that the state is among the southernmost states of the US Midwest, evaluation of freshwater habitats of Indiana provides a useful perspective on potential impacts of climate change. In our study, we first review expected or anticipated changes to physico-chemical and habitat conditions in wetlands, lotic systems, small glacial lakes and Lake Michigan. We then highlight anticipated responses of select aquatic biota to these changes. We describe how climatic changes may interact with other anthropogenic stressors affecting freshwater habitats and consider the potential for evolutionary adaptation of freshwater aquatic organisms to mediate any responses. Given anticipated changes, we suggest aquatic ecosystem managers take a precautionary approach broadly applicable in temperate regions to (a) conserve a diversity of aquatic habitats, (b) enhance species diversity and both inter- and intra-population genetic variation, and (c) limit stressors which may exacerbate the risk of decline for aquatic biota

    On Multistep Bose-Einstein Condensation in Anisotropic Traps

    Get PDF
    Multistep Bose-Einstein condensation of an ideal Bose gas in anisotropic harmonic atom traps is studied. In the presence of strong anisotropy realized by the different trap frequency in each direction, finite size effect dictates a series of dimensional crossovers into lower-dimensional excitations. Two-step condensation and the dynamical reduction of the effective dimension can appear in three separate steps. When the multistep behavior occurs, the occupation number of atoms excited in each dimension is shown to behave similarly as a function of the temperature.Comment: 26 pages, 7 figures, revised version, to appear in Jour. Phys.

    Aquatic Ecosystems in a Shifting Indiana Climate: A Report from the Indiana Climate Change Impacts Assessment

    Get PDF
    Indiana is home to many types of aquatic ecosystems, including lakes, rivers, streams, wetlands and temporary (ephemeral) pools, which provide habitats for a wide range of plants and animals. These ecosystems will experience changes in water quantity, water temperature, ice cover, water clarity and oxygen content as the state’s temperature and rainfall patterns shift. The plants and animals living in these aquatic ecosystems will undergo changes that will vary based on the species and the specific places they inhabit. It is challenging to know precisely how organisms will respond to changes in climate. Effects on one species create a difficult-to-predict chain reaction that potentially influences other species in the same ecosystem. Some organisms will adapt and evolve to survive, or even thrive, as the climate changes, but they will have to adjust to more than just the changes in climate. They will also respond to changes in a wide variety of other environmental factors that affect them, including invasive species, habitat destruction, contaminants, nutrient runoff, and land management decisions. While these complicated interactions make it challenging to predict the long-term fate of Indiana’s aquatic species, enough is known about climate-related stressors to help managers develop strategies to avoid the most critical outcomes, hopefully avoiding species loss. This report from the Indiana Climate Change Impacts Assessment (IN CCIA) uses climate projections for the state to explore the potential threats to Indiana’s aquatic ecosystems and describes potential management implications and opportunities

    Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection

    Get PDF
    RESUMEN: We have observed that the dry-season length (DSL) has increased over southern Amazonia since 1979, primarily owing to a delay of its ending dates (dry-season end, DSE), and is accompanied by a prolonged fire season. A poleward shift of the subtropical jet over South America and an increase of local convective inhibition energy in austral winter (June–August) seem to cause the delay of the DSE in austral spring (September–November). These changes cannot be simply linked to the variability of the tropical Pacific and Atlantic Oceans. Although they show some resemblance to the effects of anthropogenic forcings reported in the literature, we cannot attribute them to this cause because of inadequate representation of these processes in the global climate models that were presented in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. These models significantly underestimate the variability of the DSE and DSL and their controlling processes. Such biases imply that the future change of the DSE and DSL may be underestimated by the climate projections provided by the Intergovernmental Panel on Climate Change’s Fifth Assessment Report models. Although it is not clear whether the observed increase of the DSL will continue in the future, were it to continue at half the rate of that observed, the long DSL and fire season that contributed to the 2005 drought would become the new norm by the late 21st century. The large uncertainty shown in this study highlights the need for a focused effort to better understand and simulate these changes over southern Amazonia

    Kinesin's backsteps under mechanical load

    Full text link
    Kinesins move processively toward the plus end of microtubules by hydrolyzing ATP for each step. From an enzymatic perspective, the mechanism of mechanical motion coupled to the nucleotide chemistry is often well explained using a single-loop cyclic reaction. However, several difficulties arise in interpreting kinesin's backstepping within this framework, especially when external forces oppose the motion of kinesin. We review evidence, such as an ATP-independent stall force and a slower cycle time for backsteps, that has emerged to challenge the idea that kinesin backstepping is due to ATP synthesis, i.e., the reverse cycle of kinesin's forward-stepping chemomechanics. Supplementing the conventional single-loop chemomechanics with routes for ATP-hydrolyzing backward steps and nucleotide-free steps, especially under load, gives a better physical interpretation of the experimental data on backsteps.Comment: 5 figures and 2 table

    A Multi-Stage Process to Develop Quality Indicators for Community-Based Palliative Care Using interRAI Data

    Get PDF
    Background: Individuals receiving palliative care (PC) are generally thought to prefer to receive care and die in their homes, yet little research has assessed the quality of home- and community-based PC. This project developed a set of valid and reliable quality indicators (QIs) that can be generated using data that are already gathered with interRAI assessments-an internationally validated set of tools commonly used in North America for home care clients. The QIs can serve as decision-support measures to assist providers and decision makers in delivering optimal care to individuals and their families. Methods: The development efforts took part in multiple stages, between 2017-2021, including a workshop with clinicians and decision-makers working in PC, qualitative interviews with individuals receiving PC, families and decision makers and a modified Delphi panel, based on the RAND/ULCA appropriateness method. Results: Based on the workshop results, and qualitative interviews, a set of 27 candidate QIs were defined. They capture issues such as caregiver burden, pain, breathlessness, falls, constipation, nausea/vomiting and loneliness. These QIs were further evaluated by clinicians/decision makers working in PC, through the modified Delphi panel, and five were removed from further consideration, resulting in 22 QIs. Conclusions: Through in-depth and multiple-stakeholder consultations we developed a set of QIs generated with data already collected with interRAI assessments. These indicators provide a feasible basis for quality benchmarking and improvement systems for care providers aiming to optimize PC to individuals and their families

    Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species

    Get PDF
    The ability to efficiently and accurately determine genotypes is a keystone technology in modern genetics, crucial to studies ranging from clinical diagnostics, to genotype-phenotype association, to reconstruction of ancestry and the detection of selection. To date, high capacity, low cost genotyping has been largely achieved via “SNP chip” microarray-based platforms which require substantial prior knowledge of both genome sequence and variability, and once designed are suitable only for those targeted variable nucleotide sites. This method introduces substantial ascertainment bias and inherently precludes detection of rare or population-specific variants, a major source of information for both population history and genotype-phenotype association. Recent developments in reduced-representation genome sequencing experiments on massively parallel sequencers (commonly referred to as RAD-tag or RADseq) have brought direct sequencing to the problem of population genotyping, but increased cost and procedural and analytical complexity have limited their widespread adoption. Here, we describe a complete laboratory protocol, including a custom combinatorial indexing method, and accompanying software tools to facilitate genotyping across large numbers (hundreds or more) of individuals for a range of markers (hundreds to hundreds of thousands). Our method requires no prior genomic knowledge and achieves per-site and per-individual costs below that of current SNP chip technology, while requiring similar hands-on time investment, comparable amounts of input DNA, and downstream analysis times on the order of hours. Finally, we provide empirical results from the application of this method to both genotyping in a laboratory cross and in wild populations. Because of its flexibility, this modified RADseq approach promises to be applicable to a diversity of biological questions in a wide range of organisms
    corecore