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Abstract 

Recent climate-driven, physico-chemical changes documented in aquatic systems throughout 
the world are expected to intensify in the future. Specifically, changes in key environmental 
attributes of aquatic systems, such as water quantity, clarity, temperatures, ice cover, seasonal 
flow regimes, external loading, and oxygen content, will undoubtedly have a broad set of direct 
and indirect ecological consequences. Some anticipated impacts may be similar across different 
aquatic ecosystems, while others may be system-specific. Here, we review the potential effects 
of climatic changes for different freshwater habitats within the state of Indiana, USA, a 
Midwestern state with diverse land and water features. Given this heterogeneity and that the 
state is among the southernmost states of the US Midwest, evaluation of freshwater habitats of 
Indiana provides a useful perspective on potential impacts of climate change. In our study, we 
first review expected or anticipated changes to physico-chemical and habitat conditions in 
wetlands, lotic systems, small glacial lakes and Lake Michigan. We then highlight anticipated 
responses of select aquatic biota to these changes. We describe how climatic changes may 
interact with other anthropogenic stressors affecting freshwater habitats and consider the 
potential for evolutionary adaptation of freshwater aquatic organisms to mediate any responses. 
Given anticipated changes, we suggest aquatic ecosystem managers take a precautionary 
approach broadly applicable in temperate regions to (a) conserve a diversity of aquatic habitats, 
(b) enhance species diversity and both inter- and intrapopulation genetic variation, and (c) limit 
stressors which may exacerbate the risk of decline for aquatic biota. 

1 Climatic effects on freshwater systems in Indiana 

https://doi.org/10.1007/s10584-019-02502-w
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53 Spanning from roughly the 37° 42′ to the 41° 42′ northern parallels, Indiana, USA, is home to 
54 several types of aquatic ecosystems. Many streams and rivers run through the state, ultimately 
55 draining to the Ohio and Mississippi Rivers and lakes Erie and Michigan (Fig. 1). Of particular 
56 note, the Wabash River watershed drains almost 75% of the state and includes a 661-km 
57 undammed, free-flowing section, the longest such stretch in the US east of the Mississippi 
58 River. Small, glacially formed lakes abound in the north, while in the south most lentic 
59 waterbodies are reservoirs. Wetland ecosystems and small private ponds are found throughout 
60 the state. And, the northwest region of the state abuts Lake Michigan, which when combined 
61 with hydrologically uniform Lake Huron, constitutes the largest-by-surface-area freshwater lake 
62 in world. Given this diversity plus the physical location of Indiana (i.e., one of the southernmost 
63 states in the US Midwest), Indiana is an interesting geographic area to consider the potential 
64 consequences of climate change on aquatic systems, especially considering that physico­
65 chemical and biotic attributes of aquatic systems here are already affected by climate change. 
66 
67 Over the past century, Indiana has warmed by 0.7 °C and annual rainfall has increased by > 140 
68 mm (Widhalm et al. 2018). This trend is expected to continue in the future, as downscaled 
69 climate models consistently forecast warmer air temperatures and an increase in total 
70 precipitation across the Midwest and Great Lakes region (e.g., Wuebbles and Hayhoe 2004, 
71 Byun and Hamlet 2018, Hamlet et al. in press). Though projections are variable, most 
72 predictions over the next century suggest the largest increases in air temperatures in summer 
73 and the largest increases in precipitation in winter and spring (Kling et al. 2003, Hayhoe et al. 
74 2010, Byun and Hamlet 2018, Hamlet et al. in press). 
75 
76 Increased air temperatures directly affect aquatic systems by increasing mean water 
77 temperatures, e.g., offshore surface water temperatures in Lake Michigan have increased ~ 0.5 
78 °C per decade since 1980 (Collingsworth et al. 2017) with consistent increases in late summer 
79 and early fall (Fig. 2a). However, thermal characteristics of aquatic systems are more complex 
80 than simple mean temperatures, and characteristics such as diurnal temperature variation, 
81 vertical stratification patterns, and extent of ice cover may also respond to climate change. 
82 

83 
84 Fig. 1 a Waterways of Indiana that may serve as habitat for aquatic and semi-aquatic organisms. 
85 b Eight-digit hydrologic accounting unit watersheds categorized by major drainage region. c 
86 Sample detail of waterways depicted in A. d Location of the state of Indiana within the USA 
87 
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88 With warming temperatures, across the Great Lakes, the mean extent of ice coverage 
89 (December 1 to April 30) declined by 67% from 1973 to 2017, and during the same period, ice 
90 cover on Lake Michigan declined by 70% (Wang et al. 2017). 
91 
92 Future changes in water temperatures and other thermal characteristics will vary with system 
93 type (i.e., lentic vs. lotic), size, depth, and drainage characteristics (including relative surface 
94 runoff vs. groundwater inputs). In the Great Lakes, future surface water temperatures have been 
95 projected to increase 2–12 °C (Kling et al. 2003), and by mid-century, Lake Michigan summer 
96 surface temperatures may exceed historical averages by 2.4–3 °C (Kao et al. 2015a). Warming 
97 air temperatures will likely delay ice formation in the winter and advance ice melt in the spring 
98 (Sharma et al. 2019). Ultimately, systems that have historically experienced ice cover during 
99 most winters may remain ice-free in the future, with important implications for not only 

100 ecosystem processes but also human winter activities (e.g., ice fishing may become less 
101 common). Similarly, as water temperatures warm, thermal stratification in sufficiently deep 
102 bodies of water (e.g., Lake Michigan, glacial lakes, reservoirs) will likely develop earlier in the 
103 spring with turnover later in the fall. 

104 
105 Fig. 2 Example changes in key abiotic variables over time. A. Annual change in monthly mean 
106 surface water temperatures of southern Lake Michigan, including all years from 1982 to 2017 
107 (°C/year). Temperature data from NOAA southern Lake Michigan buoy 45007. B. Annual 
108 change in monthly mean discharge at the Montezuma USGS gage station on the Wabash River, 
109 including all years from 1928 to 2017 (m3/year). Points represent slopes and error bars represent 
110 95% confidence intervals 
111 



 

     
      

   
     

    
    

    
  

      
    

     
 

    
 
 

     
   

    
      

  
      

   
     

  
    
  

 
   

    
      

    
     

    
    

     
 

     
 

  
 

 
  

  
   

       
  

 
    

  
    

 
  

    
    

  

112 The duration and depth of stratification will likely also be affected by wind and storms, which 
113 influence the mixing depth of the epilimnion, and solar radiation and water turbidity, which 
114 influence depth-specific warming (Stefan et al. 2001). Local and regional predictions for these 
115 four variables are scarce. Wind is a particularly important variable for which future predictions 
116 are lacking. Unlike large marine systems where water movement is strongly influenced by tidal 
117 currents, water currents in Lake Michigan and lakes of northern Indiana are almost entirely 
118 wind-driven. In addition to influencing the depth of the thermocline and the timing of onset and 
119 breakdown of stratification, prevailing wind directions can alter characteristics of seiches, 
120 upwellings, and other features with potential to affect biota. While there is past evidence that 
121 prevailing wind direction over the Great Lakes has shifted on a decadal timescale (Waples and 
122 Klump 2002), it is unclear how wind intensity and direction in Indiana will change in the future. 
123 
124 There is more information and consensus regarding projected precipitation patterns. Average 
125 precipitation may increase slightly, extreme precipitation events may become more frequent, 
126 periods of drought may occur more often, and precipitation may shift seasonally. In Indiana, 
127 annual precipitation is expected to increase by 6–8% by middle of this century and 5–10 % by 
128 the end of the century. Specifically, winter and spring precipitation are expected to increase 16– 
129 20% and 13–16%, respectively, by mid-century, while summer and fall precipitation extremes 
130 are expected to become more variable, with overall declines in rainfall of 2– 3% (Hamlet et al. 
131 in press, Cherkauer et al. This issue). Changes in discharge will vary depending on catchment 
132 characteristics and the extent to which flows are regulated. With increases in precipitation over 
133 the past century, the Wabash River has shown trends of increasing streamflow (Fig. 2b). In the 
134 future, fluvial systems, especially those receiving relatively high surface runoff, will likely 
135 become more flashy, small shallow water bodies including small streams and wetlands may 
136 experience more frequent periods of drying, and water levels of lakes, reservoirs, and even Lake 
137 Michigan may become more variable (Cherkauer et al. This issue). 
138 
139 Nutrient and sediment losses from Midwestern watersheds are strongly tied to precipitation and 
140 runoff (Royer et al. 2006; Royer and David 2005). Nutrient runoff is already elevated in many 
141 areas of Indiana (e.g., National Research Council 2000; Smith et al. 2008). Given that large 
142 amounts of manure and fertilizer are applied to agricultural fields in spring, increased 
143 precipitation at this time of year may result in increased loading of phosphorous and nitrogen to 
144 aquatic ecosystems. Similarly, an expected decrease in winter snow cover will result in 
145 increased exposure of bare soil to rain storms (Jeppesen et al. 2009, Hayhoe et al. 2010). Thus, 
146 in the absence of altered land-use management practices, climatic changes are expected to lead 
147 to increased runoff of both nutrients, especially in the winter and spring. Such increased nutrient 
148 loading would in particular be expected to stimulate intense spring and summer algal blooms, 
149 with potential consequences including increased growth of harmful Cyanobacteria, expanded 
150 extent and magnitude of hypoxic conditions and changes in community structure of both lower 
151 and upper food web components. 
152 
153 2 Effects on aquatic biota 
154 Physical effects of climate change on Indiana waterbodies will affect aquatic communities, 
155 populations, and individuals both directly and indirectly in positive and negative manners (e.g., 
156 Noyes et al. 2009). Most aquatic species engage in complex biotic interactions, and their 
157 populations are internally regulated through both compensatory and depensatory processes. 
158 
159 For example, limited resources may lead to decreased individual survival but increased 
160 population-level growth and reproductive success through release of density-dependent 
161 controls. By contrast, decreased survival may be exacerbated if individuals encounter mates less 
162 frequently or populations experience inbreeding depression. In addition to internal regulation, 
163 populations respond to the dynamics of their predators, prey, competitors, and symbionts. 
164 Community context will therefore be critical for making predictions of responses of different 
165 aquatic species to the physical effects of climate change. Phenological shifts are one of the most 
166 commonly reported consequences of climate change (Hall 2014). Because phenology is closely 
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167 linked to long-term patterns in temperature and precipitation, climate change can alter 
168 emergence time, flowering time, growing season, dispersal, and reproduction. In addition, 
169 aquatic systems in Indiana are threatened by many other natural and anthropogenic stressors 
170 (e.g., invasive species, habitat loss, pollution), and it is important to consider the potential for 
171 these to interact with climatic changes and exacerbate or mitigate effects on aquatic ecosystems 
172 (Fig. 3). 
173 
174 As examples, climate change may favor the establishment and spread of invasive species (Rahel 
175 and Olden 2008) and affect pathogen dynamics. Thermal conditions may shift to within ranges 
176 that meet the physiological requirements for an invasive species (Bierwagen et al. 2008). 
177 Increased flooding could facilitate movement of invasive species 

178 
179 Fig. 3 Conceptual diagram of processes leading to climatic effects on aquatic ecosystems. 
180 External climatic driver's will lead to a suite of physico-chemical responses in aquatic systems. 
181 These climatic responses will interact with various other anthropogenic stressors and eco­
182 evolutionary processes to affect vital rates of aquatic organisms and thereby structure 
183 population dynamics, community composition, and ecosystem patterns 
184 
185 (e.g., bighead and silver carp Hypophthalmichthys nobilis and H. molitrix). After an extreme 
186 spring flooding event on the Ohio River, the green tree frog (Hyla cinerea) expanded its 
187 geographic range from Kentucky into Indiana (Lodato et al. 2014). Conversely, drying up of 
188 riparian areas may create new areas for colonization by invasive plant species such as 
189 common/giant reed Phragmites australis (Tougas-Tellier et al. 2015). In addition, warmer 
190 temperatures are expected to increase parasite replication rates, which could facilitate 
191 transmission to hosts (e.g., Hoverman et al. 2013) and lengthen growing seasons, leading to 
192 increased frequency of transmission. Conversely, if warmer temperatures increase the mortality 
193 rate of parasites or enhance the immune function of hosts, transmission would be reduced. For 



 

     
   

  
 

 
     

   
   

  
  

      
    

   
     

      
      

  
 

        
   

      
    

   
     

  
 

 
 

    
 

       
  

  
     

  
     

 
    

   
      

    
      

      
 

 
 

 
   

  
    

  
   

 
    

  

194 example, severe drought can reduce the severity but not the prevalence of the pathogenic fungus 
195 Batrachochytrium dendrobatidis in the Indiana endangered crawfish frog (Lithobates areolatus) 
196 (Terrell et al. 2013); thus, climate change-induced drought may benefit infected frog 
197 populations. 
198 
199 Given the potentially complex mediating effects of biotic interactions and multiple stressors, it 
200 is difficult to anticipate how aquatic organisms will respond to future environmental conditions 
201 by simply considering current ecological tolerances (i.e., niche breadth). Such predictions may 
202 be more difficult still given the potential for evolution to mediate responses. Adaptation to 
203 climatic and hydrologic changes could help avoid a reduction in fitness and extinction; 
204 however, standing genetic variation must be sufficient to allow for such responses (Merila and 
205 Hendry 2014). For example, a plant population of Cakile edentula var. lacustris in Indiana 
206 Dunes National Lakeshore evolved drought tolerance in response to drier beach conditions 
207 (Dudley 1996). These populations may therefore persist in the face of future drought events. 
208 While increased dispersal ability can also evolve in response to shifting habitat suitability 
209 (Weiss-Lehman et al. 2017), a particular challenge for many aquatic organisms is that they are 
210 severely limited in ability to disperse among systems. 
211 
212 It is beyond the scope of this review to consider all potential effects of climate change on biota 
213 in Indiana’s aquatic ecosystems. As described above, very precise predictions for specific 
214 population- and community-level responses are unrealistic given the potential for intra- and 
215 inter-specific interactions, evolutionary processes, and additional external stressors to mediate 
216 such responses. Instead, we provide qualitative perspective of likely responses, organized by 
217 aquatic ecosystem type and major taxa, noting where responses are anticipated to be similar 
218 across systems and taxonomic groups. 
219 
220 3 Habitat effects 
221 
222 In a temperate environment like Indiana, direct impacts of warmer temperatures on aquatic 
223 systems may come in several forms. Physiological rates of most aquatic species are directly 
224 responsive to water temperature. Warmer temperatures and shorter ice cover will lead to a 
225 longer growing season, with subsequent increases in primary productivity and microbial 
226 activity. Algal blooms will likely be more intense, with greater potential for growth of harmful 
227 Cyanobacteria (e.g., Paerl et al. 2016). Warm water temperatures may also cause greater release 
228 of nutrients (e.g., phosphorus) and contaminants (e.g., mercury) from sediments, further 
229 exacerbating effects of nutrient and contaminant runoff (Cherkauer et al. This issue). 
230 
231 Increased temperatures combined with shifts in precipitation will likely alter variability of 
232 hydroperiods, including increased frequency and magnitude of dry conditions (e.g., drought; 
233 Mishra et al. 2010). Alterations to the flow regime of lotic habitats and the hydroperiod of lentic 
234 habitats may substantially change freshwater ecosystems (Dawson et al. 2003; Brooks 2009; 
235 Junk et al. 2012). An immediate result of dry conditions is loss of freshwater habitats, e.g., a 
236 loss of floodplain habitat around lakes and along rivers due to less frequent inundation with 
237 water. 
238 
239 3.1 Wetlands 
240 
241 Wetlands are significant reservoirs for biodiversity and provide ecosystem services including 
242 flood control, groundwater replenishment, water purification, and shoreline stabilization. As 
243 noted in Cherkauer et al. (this issue), changing drought conditions in Indiana may lead to 
244 increased use of groundwater resources from a variety of sectors. Natural and constructed 
245 wetlands may help mitigate negative impacts related to climate change and water use. However, 
246 human activities have greatly reduced the extent of natural wetland habitat across the globe. In 
247 Indiana, an estimated 86% of wetland area has been removed (IN DNR 1989) to establish 
248 agricultural lands, control vector-borne diseases, or expand urban centers. Climate change will 



 

  
   

 
  

      
   

   
      

 
 

  
   

 
   

   
    

 
    

    
     

    
      

     
     

    
  

   
 

    
    

     
    

   
     

    
    

   
 

     
 

   
   

   
      

  
     

  
 

  
 

      
 

     
   

    

249 likely exacerbate natural wetland habitat losses. Moreover, an increased frequency of both 
250 droughts and intense precipitation events will increase wetland variability. 
251 
252 Wetlands exist along a physical gradient from ephemeral to permanently covered by standing 
253 water (Wellborn et al. 1996). With warmer temperatures and flashier precipitation, it is likely 
254 that many ephemeral ponds in Indiana will be lost. Simultaneously, the hydroperiod of semi­
255 permanent wetlands may become more ephemeral. Because only a subset of species is capable 
256 of reproducing in ephemeral wetlands (Wellborn et al. 1996; Brooks 2009), overall diversity 
257 would decrease. 
258 
259 In addition to loss of freshwater habitat, changes to flow regimes and inundation periods affect 
260 community composition and relative abundance of plant species. In particular, drier soils favor 
261 terrestrial plant species over wetland adapted species. Increased encroachment of terrestrial 
262 vegetation within wetland systems can alter the water holding capacity of soils and reduce the 
263 likelihood of water retention during precipitation events. Thus, the frequency and magnitude of 
264 dry conditions can accelerate the conversion of wetlands into terrestrial systems (Brooks 2009). 
265 3.2 Lotic systems 
266 Given that temperature affects primary production, decomposition, and litter processing 
267 (Durance and Ormerod 2007), with warmer temperatures, there will likely be an upstream shift 
268 in both the biotic and abiotic characteristics of river systems along the river continuum. Greater 
269 precipitation could lead to continued increase in stream discharge (Fig. 2b) and contribute to 
270 deposition of fine sediments, bank erosion, and channel widening. Altered hydrology, e.g., that 
271 seen in the Wabash River watershed (Pyron and Neumann 2008), can lead to ecological 
272 responses such as loss of sensitive species, algal scour, disruption of fish life cycles, and altered 
273 energy flow (Poff et al. 2006). Similarly, increased sedimentation will likely negatively impact 
274 growth of submerged plant communities that serve as habitat for fish and macroinvertebrates 
275 (Jeppesen et al. 2009). 
276 
277 Riparian corridors form a diverse and complex interface between streams and terrestrial 
278 ecosystems (Naiman et al. 1993). As their width varies with stream size, geomorphological 
279 setting, and hydrologic regime, they are likely extremely susceptible to climate change (Capon 
280 et al. 2013). Increased surface and air temperatures plus altered precipitation patterns are 
281 expected to shift reproductive phenology and distributions of plants (Meyer et al. 1999). While 
282 riparian species may be more resilient to increased flooding than upland species (Seavy et al. 
283 2009), if bank erosion increases with extreme flow events, riparian ecosystems may be 
284 negatively impacted. In addition, increased sedimentation affects downstream riparian 
285 ecosystems (Palmer et al. 2009). 
286 
287 Climatic changes and anthropogenically mediated processes that alter stream dynamics may 
288 also impact riparian assemblages, which can further modify in-stream dynamics. For example, 
289 riparian vegetation of prairie streams will change with modification of wildfire regimes and 
290 grazing, ultimately altering ecosystem properties of streams (Riley and Dodds 2012). Riparian 
291 vegetation contributes allochthonous inputs, including woody debris, to streams which 
292 influence stream ecosystem properties and hydraulics (Harmon et al. 1986). Large woody debris 
293 can modify local sediment dynamics or cause flooding via debris dams. Stream organisms 
294 utilize woody debris as habitat, while breakdown of woody debris by fungus and bacteria 
295 contributes energy and nutrients to aquatic systems. 
296 
297 3.3 Inland glacial lakes 
298 
299 The majority of Indiana’s lentic water bodies are presently classified as eutrophic due to natural 
300 processes plus culturally elevated nutrient loading, but climate change will likely exacerbate 
301 these conditions. Eutrophication, the process of a system becoming more productive, can lead to 
302 more intense algal blooms and increased turbidity in lentic systems, ultimately contributing to 
303 hypoxic conditions and reorganization of both producer and consumer communities (Paerl and 



 

 
    

    
  
     

   
     

     
    

     
   

     
     

    
  

 
 

   
   

     
  

 
     

   
   

  
 

 
 

    
      

  
   

      
    

 
 

   
      

     
   

   
    

    
    

   
    

  
   

      
 

 
 

 

304 Huisman 2009). Eutrophic conditions may favor certain primary producers, including 
305 Cyanobacteria. Some of these are inedible by consumers and toxic, and several nuisance and 
306 toxic Cyanobacteria are already present and monitored in Indiana. Changes in available prey 
307 and altered physico-chemical conditions (i.e., decreased water clarity and oxygen) can favor 
308 consumers tolerant of these changing environmental conditions and able to exploit novel prey. 
309 One of the more impactful consequences of eutrophication may be the development of bottom 
310 water hypoxia (typically defined as less than 2–3 mg O2/L, but see Hrycik et al. 2017) or anoxia 
311 (0 mg O2/Lwater). Large algal blooms stimulated by nutrient loading eventually die and settle to 
312 the bottom of aquatic systems, where they decompose. This process requires high respiration by 
313 bacteria and other decomposers; thus, large algal blooms in the top of the water column may 
314 cause high consumption of oxygen down below. When stratification is present in a waterbody, 
315 there is minimal mixing between the epi- and hypolimnion, and depleted oxygen in the 
316 hypolimnion may not be replenished from the epilimnion. Essentially, all natural glacial lakes in 
317 Indiana which are deep enough to stratify experience hypolimnetic hypoxia or anoxia, with 
318 strong potential for negative impacts on organisms residing in this benthic zone. 
319 
320 The climate change-induced combination of increased nutrient loading, higher water 
321 temperatures (plus resulting decreased solubility of oxygen), and earlier onset and later breakup 
322 of stratification are expected to contribute to increased magnitude and duration of hypoxic 
323 conditions in Indiana’s lakes. In turn, this may contribute to further loss of suitable habitat for 
324 aquatic organisms and changes to community structure. 
325 
326 While permanent lakes are more buffered against reductions in water level than wetlands, future 
327 variable precipitation and evaporation dynamics could contribute to more alterations of lake 
328 levels. This could affect organisms’ access to important nearshore habitat features, e.g., coastal 
329 wetlands, and thereby limit species persistence. 
330 
331 3.4 Lake Michigan 
332 
333 With altered thermal conditions, lake levels, and loading patterns of nutrients and sediments, 
334 habitat conditions in Lake Michigan will be affected by climate change in a manner similar to 
335 other aquatic systems in Indiana. In general, warming in coastal regions of Lake Michigan will 
336 likely result in altered habitat and community composition of plants, macroinvertebrates, and 
337 fish (e.g., Dudley 1996). However, due to its large size and depth, thermal habitat in Lake 
338 Michigan will not change uniformly, with nearshore zones reaching higher temperatures in 
339 summer than deep offshore waters. 
340 
341 In the Lake Michigan basin, Robertson et al. (2016) modeled 24 different climate change 
342 scenarios and predicted that an average increase in precipitation of 5%, coupled with a 2.6 °C 
343 average predicted increase in air temperature, would reduce annual tributary flow to the lake by 
344 1.8% over the next century. While projections of total annual changes in phosphorous loading 
345 to Lake Michigan were inconsistent, there was general consensus predicting increased 
346 phosphorus loading in the spring and decreased loading in the summer (Robertson et al. 2016). 
347 While phosphorous loading was a serious concern for Lake Michigan in the past, more recent 
348 nutrient reduction efforts plus the filtering effects of invasive dreissenid mussels are causing 
349 oligotrophication. Decreased primary production has likely contributed to decreased secondary 
350 production and declines in several piscivorous fishes and the economically valuable fisheries 
351 that depend on such species. Whether future climatic conditions contribute towards reversing or 
352 exacerbating oligotrophication in Lake Michigan may have important implications for the 
353 suitability of habitat, the type of fish species which may thrive in the lake, and the potential 
354 yield and economic value of the lake’s fisheries. 
355 
356 4 Taxonomic responses 
357 



 

      
       

    
     

 
    

 
 

 
   

    
  

     
    
    

      
   

    
   

    
  

 
 

 
   

  
   

  
     

 
   

 
 

     
   

      
    

   
  

  
    

   
 

     
    

  
     

   
 

 
 

   

      
  

358 Water temperature has strong effects on the physiology and vital rates of most aquatic biota and 
359 is often a signal for emergence or migration at appropriate times (e.g., Voelz et al. 1994). 
360 Changes in the amount and flow of water can affect the overall quantity of aquatic habitat, 
361 dispersal ability within and across systems and phenology of emergence, migration, and 
362 reproduction. Thus, altered thermal characteristics, flow regimes, and hydroperiods are 
363 expected to affect a broad suite of aquatic biota. 
364 
365 4.1 Non-mussel invertebrates 
366 
367 In general, invertebrate communities are expected to respond to changes in water temperatures, 
368 flow regime, and hydroperiods. In a temperate climate area, headwater stream 
369 macroinvertebrate assemblage composition changed and density decreased as stream 
370 temperatures increased over a 25-year period (Durance and Ormerod 2007). Similar results 
371 were demonstrated experimentally in headwater stream manipulations (Hogg and Williams 
372 1996). Invertebrate species specialized to intermittent flow regimes are negatively influenced by 
373 more frequent dry periods (Brooks 2009). While many invertebrates are adapted to the short 
374 hydroperiods of vernal wetlands, droughts can substantially reduce the length of time that these 
375 water bodies hold water and, consequently, prevent successful animal emergence before the 
376 wetland dries up. Moreover, extended periods of drought can reduce the availability of wetland 
377 habitats for these species on the landscape. While some semi-aquatic organisms may be able to 
378 disperse overland, the lack of suitable habitats may ultimately lead to population declines. 
379 
380 4.2 Mussels 
381 
382 Freshwater mussels (Unionidae) are the most endangered group of Indiana’s aquatic organisms, 
383 with nearly half of the almost 80 native species either extirpated or listed as endangered (both 
384 federally and in-state) or of special concern. The reasons for their decline include overharvest 
385 during the peak of the button and cultured pearl industries, negative effects of point and non­
386 point source pollution, loss or alteration of critical habitats, and impacts of nonnative species. 
387 Freshwater mussels, because of their limited mobility, patchy distribution, and complex 
388 reproductive strategies, could be especially vulnerable to some of the predicted impacts of 
389 climate change on local environments. 
390 
391 Adult freshwater mussel movement is very limited; thus, they are vulnerable to local changes in 
392 water levels. As water levels decrease, freshwater mussels may burrow vertically down into the 
393 substrate in an attempt to track the decreasing water table or move horizontally across the 
394 substrate searching for water. Neither choice is ideal. Freshwater mussels typically cannot bury 
395 themselves to sufficient depth to remain submerged, and long, meandering trails left in the 
396 substrate as mussels search laterally for water suggest little-to-no sense of direction. Either way, 
397 mussels often end up stranded on dry ground, and drought resulting from climate change could 
398 potentially cause massive die-offs, especially in areas that historically did not become dry 
399 (Golladay et al. 2004). 
400 
401 Most lotic freshwater mussel species in Indiana tend to cluster in “beds” in areas of stable, non­
402 shifting, non-embedded, substrate (typically, a mixture of sand, gravel, and cobble). Increased 
403 flashiness of stream systems due to climate change could potentially scour and destroy these 
404 critical reaches along with the mussels they contain (Hastie et al. 2003). Freshwater mussels 
405 dislodged during these events may be deposited in areas of undesirable habitat, potentially 
406 negatively affecting the overall freshwater mussel community. 
407 
408 During reproduction, most species of freshwater mussels rely on specific fishes as hosts for 
409 their parasitic larvae (glochidia), where the release of glochidia coincides with the 
410 congregation/migration of host fishes. If fish spawning and migration patterns change in 
411 response to altered spring discharge patterns and water temperatures, the critical interaction 
412 between mussels and host fish could be disrupted. Higher maximum water temperatures during 



 

   
   

      
     

  
 

 
 

  
     

     
    
   

    
    

      
    

   
      

   
    

    
    

    
  

  
 

     
   

   
     

     
       

  
   

   
  

 
   
    

   
      

  
    

   
   

      
   

    
 

    
     

   
 

413 the summer could also exceed the thermal limits for the survival of mussel sperm, glochidia, 
414 juveniles, or adults, or host fish, further disrupting reproductive activity of mussels (Pandolfo et 
415 al. 2010; Ganser et al. 2013). Any additional stressors to the limited reproduction of already 
416 vulnerable mussel populations would have severely detrimental effects to the longterm 
417 sustainability of these species in Indiana. 
418 
419 4.3 Fishes 
420 
421 Increased water temperature affects growth of fishes through physiological and indirect 
422 ecosystem effects (Fry 1971; Stenseth et al. 2002). Eaton and Scheller (1996) suggested that 
423 streams in the central Midwest will experience some of the greatest warming in the continental 
424 USA, leading to substantial reduction of suitable habitat for fishes. Mohseni et al. (2003) 
425 repeated their analysis with improved water-air temperature relationships and found that habitat 
426 ranges for warm water fishes (i.e., the majority of Indiana fishes) will generally increase or not 
427 change. However, 15 species of Indiana fishes that are classified as cool water fishes will 
428 experience significant habitat loss with climate change (Mohseni et al. 2003), and the few 
429 native cold-water fish in Indiana inland systems are expected to decline. Where possible (e.g., 
430 in stratified lakes), these fishes will likely disperse into deeper, cooler water (Magnuson et al. 
431 1979; Hall 2014), but this action may come at a cost (e.g., exposure to hypoxia). Climate 
432 warming may positively affect vital rates for some temperate ectotherms, while negatively 
433 affecting growth, survival and reproduction of others. Even within a species, thermal effects 
434 may be inconsistent, as highlighted by two recent studies evaluating effects of winter thermal 
435 conditions on offspring quality of different stocks of yellow perch (Farmer et al. 2015; Feiner et 
436 al. 2016a). Ultimately, increased water temperatures will likely lead to changes in fish 
437 population and community composition, with communities consisting of a larger proportion of 
438 species and genotypes tolerant of warmer conditions. 
439 
440 Bioenergetics studies of Lake Michigan have examined the effects of climate change on thermal 
441 habitat for various fishes such as cold-water salmonines (e.g., lake trout Salvelinus namaycush) 
442 and lake whitefish Coregonus clupeaformis, cool-water yellow perch Perca flavescens, and 
443 warm-water largemouth bass Micropterus salmoides (Hill and Magnuson 1990; Brandt et al. 
444 2002; Kao et al. 2015a, b), all of which occupy the coastal waters of Lake Michigan at different 
445 times of the year. Projections suggest that, at the lake-scale, the sum volume of suitable thermal 
446 habitat for fish growth may increase as offshore, deep regions of the lake warm. However, 
447 suitable habitat for the most desirable cold and cool water salmonids and percids is expected to 
448 decrease in the nearshore, relatively shallow Indiana waters of Lake Michigan while habitat for 
449 warm water fishes may increase (Ficke et al. 2007). 
450 
451 Changes in warming rates and discharge patterns may affect spawning behavior of several 
452 fishes. The direction and magnitude of specific shifts in spawning behavior will likely vary 
453 among species, due to variation in life history strategies, physiology, and dependence on 
454 climate-driven environmental cues (Collingsworth et al. 2017). While few studies have directly 
455 estimated the projected effects of climate change on reproductive phenology of fish populations, 
456 there is evidence that climate-induced warming can alter the timing of spawning for some 
457 species. For example, Lyons et al. (2015) documented earlier spawning by Lake Michigan 
458 yellow perch in response to earlier spring onset and provided evidence that Lake Michigan lake 
459 trout have spawned later during the fall during the past several decades. Höök et al. (2001) 
460 demonstrated that in northern Lake Huron, the phenology of emergence of several species of 
461 larval fishes shifted between 2 years with contrasting thermal conditions. Given that recruitment 
462 of bloater Coregonus hoyi, rainbow smelt Osmerus mordax, yellow perch, and alewife Alosa 
463 pseudoharengus are all related to prevailing climate conditions (Honsey et al. 2016a; Bunnell et 
464 al. 2017), changes in thermal habitat conditions will likely affect the reproductive success of 
465 many fish populations in the Great Lakes and other systems. 
466 



 

     
   

   
  

     
    

   
       

   
     

 
    

 
   
   

     
      

     
     

      
     

   
      

   
    

  
    

  
  

 
 

 
    

      
      

  
    

  
     

      
      

  
   

   
 

 
  

    
   
   

     
    

  
 

467 Altered flow regimes will also differentially affect fishes and contribute to changes in species 
468 distributions and composition of local assemblages. The loss of stream habitat due to reduced 
469 flow can affect dispersal patterns of fishes, including decreased access of breeding migrations to 
470 preferred habitats. Phenological changes in timing of flows can disrupt cues that fish use for 
471 spawning and migration. For some populations, this could lead to more frequent mismatches 
472 between reproduction or migration events and ideal habitat conditions. Moreover, habitat 
473 changes related to novel flow regimes may have influences beyond hydrologic effects. For 
474 example, four large flood events in the Wabash River in the last 25 years likely altered substrate 
475 habitats (Pyron et al. 2010), and changes to substrate, along with hydrology, led to different fish 
476 assemblages (Pyron et al. 2011; Pritchett and Pyron 2012). 
477 
478 Future precipitation patterns will likely alter nutrient loading to Indiana’s aquatic systems, 
479 potentially causing greater prevalence of eutrophic conditions, including more frequent 
480 nuisance algal blooms, reduced water clarity, and low oxygen concentrations. Changes in 
481 producer and consumer communities in response to eutrophication have been observed in 
482 freshwater systems throughout the Midwestern USA (e.g., Ivan et al. 2014). In fact, fish 
483 assemblages in Indiana’s glacial lakes appear to be responsive to eutrophic conditions (Feiner et 
484 al. 2016b). Some species may be particularly affected by synergistic effects of multiple stressors 
485 including those related to climate change, e.g., cold-water stenotherms may precipitously 
486 decline in lakes with new thermal and hypoxic regimes (e.g., Arend et al. 2011; Honsey et al. 
487 2016b). Cisco (Coregonus artedi), a native cold-water species in Indiana, was present in 
488 approximately 50 lakes in the state at the beginning of the twentieth century but only 6 lakes 
489 during the most recent state-wide survey (in 2012, Honsey et al. 2016b). During the summer, 
490 cisco cannot survive in warm epilimnetic waters and thus move to the cooler hypolimnion. 
491 However, if the hypolimnion is hypoxic, fish can become squeezed between a hot epilimnion 
492 and a hypolimnion with insufficient oxygen. Such processes have evidently contributed to 
493 extirpations of cisco populations in the past, and with increased water temperatures and more 
494 severe hypoxia in the future, similar processes may lead to further population extirpations of 
495 these and other cool- and cold-water species. 
496 
497 4.4 Other vertebrates 
498 
499 While many amphibians are adapted to the short hydroperiods of vernal wetlands, drought can 
500 substantially reduce the length of time that these water bodies hold water and, consequently, 
501 prevent successful animal emergence before the wetland dries up. Moreover, extended periods 
502 of drought can reduce the total availability of wetland habitats for these species in the 
503 landscape. Phenological shifts are potential consequence of climate change (Hall 2014), and 
504 calling and breeding phenology in amphibians have advanced up to 3 weeks with climate 
505 warming compared to historical averages (Beebee 1995; Gibbs and Breisch 2001). Such shifts 
506 in phenology could lead to a mismatch with wetland habitat availability. Most ephemeral 
507 wetlands are dependent on seasonal (i.e., spring) precipitation for filling, while the duration of 
508 inundation will depend on seasonal (i.e., summer) drying. Temperature-mediated shifts in 
509 species phenology may or may not match altered temporal hydrology of wetlands. This 
510 potential mismatch could affect energy expenditure and mortality rates of wetland-dependent 
511 species. 
512 
513 Water provides a key dispersal vector for many aquatic organisms, including amphibians 
514 (Nathan et al. 2008), and changes in hydrology due to climate change will likely influence 
515 dispersal rates and directions. Drought increases fragmentation between breeding ponds and 
516 wetlands used by amphibian meta-populations, reducing dispersal among suitable habitat (Walls 
517 et al. 2013). In Indiana, dispersal-limited aquatic species may have a particularly difficult time 
518 in successfully shifting their range to follow suitable habitat since aquatic ecosystems are 
519 naturally more fragmented than terrestrial counterparts. 
520 



 

   
      

     
     

  
     

     
     

    
 

 
 

 
    

  
 

   
 

     
  

    
    

   
   

     
    

 
 

 
    

    
 

   
   

  
    

     
  

    
   

  
 

 

  
       

  
     

    
     

  
       

  
  

  

521 Waterfowl, on the other hand, have the capability to disperse long distances compared to most 
522 other aquatic organisms and may be able to expand their range. Nonetheless, the National 
523 Audubon Society (2013) predicted that several waterfowl in Indiana will lose a large portion of 
524 their summer or winter range, including but not limited to the horned grebe Podiceps auritus, 
525 ring-necked duck Aythya collaris, hooded merganser Lophodytes cucullatus, and bufflehead 
526 Bucephala albeola. As climate warms in the Midwest, species are expected to need to shift their 
527 ranges northwards at a rate of approximately 1 km/year if they are to remain in the same 
528 temperature regime (Loarie et al. 2009). Again, increased dispersal can evolve in response to 
529 shifting habitat (Weiss-Lehman et al. 2017) and water fowl may in particular benefit from such 
530 evolutionary responses. 
531 
532 5. Implications of climate change for long-term management of Indiana’s aquatic ecosystems 
533 
534 The examples highlighted above are by no means the exclusive pathways by which climatic 
535 changes may affect the composition and dynamics of Indiana’s aquatic ecosystems, and we 
536 again emphasize the high degree of uncertainty associated with current predictions of responses 
537 of these ecosystems to climate change. Nonetheless, we believe there are concrete approaches to 
538 managing Indiana’s aquatic ecosystems in the face of these potential changes. In particular, we 
539 advocate for (1) management actions which promote diversity across various scales of 
540 organization, from individuals to populations, communities, and ecosystems; (2) continued 
541 research to improve our ability to anticipate how climatic changes will affect physical 
542 conditions in Indiana’s aquatic systems, including how such changes interact with other 
543 anthropogenic stressors to affect aquatic organisms, populations, and communities; and (3) 
544 adoption of a precautionary principle when enacting management plans, erring on the side of 
545 conserving systems and populations that appear to be at risk of decline as a result of climate 
546 change even if there is high level of uncertainty in this risk. 
547 
548 5.1 Promote diversity 
549 
550 Relatively diverse systems may have an increased capacity to respond to disturbances, including 
551 impacts of climate change (e.g., Elmqvist et al. 2003; Bernhardt and Leslie 2013; O’Leary et al. 
552 2017). Thus, diversity should be maintained or enhanced within and across aquatic systems, and 
553 diversity should be enriched across levels of biological organization, including individuals, 
554 populations, and communities. Various studies have highlighted the potential for increased 
555 community diversity, food web complexity, and interactions to enhance resistance and 
556 resiliency to environmental stressors, as increased diversity should expand the breadth of 
557 environmental conditions under, which some component of the system will be able to thrive. 
558 For example, multiple species may play similar functional roles within a food web: if one 
559 manages for functional diversity (or response diversity; Elmqvist et al. 2003), declines in an 
560 individual species as a result of climate change impacts can be buffered by other functionally 
561 similar species to maintain overall food web function. 
562 
563 An approach for enhancing diversity within aquatic communities and populations involves 
564 promoting habitat connectivity and diversity. Increased connectivity among systems and 
565 habitats can allow for new recruits to support locally affected populations and community and 
566 promote local recovery rates (e.g., Thrush et al. 2013). Species performance varies across 
567 habitat conditions, e.g., in glacial lakes in Indiana, young largemouth bass consume different 
568 prey across different habitats (Middaugh et al. 2013) which may translate to differential growth 
569 and survival. Access to diverse, complex habitats enhances food web connections for 
570 largemouth bass, thus increasing their likelihood of persistence in the face of change. Similarly, 
571 distinct habitats may respond differently to climatic changes, and habitats which are currently 
572 less suitable for a particular species may become more suitable in the future. For example, fall 
573 thermal conditions in a habitat may be presently too cold for a species due to high groundwater 
574 inputs and shade. In the future, the same habitat may be near thermally optimal as elevated 
575 atmospheric temperatures counteract the historically too cold groundwater and shade cooling 



 

    
  

  
  

  
 

   
     

   
     

   
    

     
  

     
   

 
 

 
   

   
   

  
   
    

    
     

         
    

  
     

    
 

 
 

 
     

    
   

   
    

       
   

 
  

  
     

   
   

    
   

     
   

   

576 effects. Importantly, habitat management should not simply target increased habitat diversity 
577 but in many systems should specifically target habitat restoration and improvement. For 
578 example, negative impacts of climate change on smallmouth bass in the Kankakee River in 
579 northwestern Indiana may be mitigated by restoration of local habitat features (Peterson and 
580 Kwak 1999). 
581 
582 In order to ensure maximum ability for aquatic organisms in Indiana to respond to projected 
583 climatic changes, it may be critical to promote intra-specific diversity within and across 
584 populations. The adaptive potential of a species to climate change is determined by the 
585 composition and diversity of genetically based traits within a population that are adaptive under 
586 a changing climatic or hydrologic regime (Falconer and Mackay 1996). Ideally, information on 
587 functional genetic diversity would be used to predict whether a species will evolve under 
588 climate change. However, the genetic diversity of functional traits adaptive under climate 
589 change is unknown for most species in Indiana. In the absence of such knowledge, neutral 
590 genetic markers can potentially be used to identify populations that have an overall low genetic 
591 diversity (Pauls et al. 2013). Phenotypic and genotypic diversity may be maintained by (a) 
592 managing for a variety of habitat conditions, favoring different genotypes and promoting 
593 phenotypic plasticity and (b) maintaining natural connectivity within populations. 
594 
595 Genetic considerations that will be key for proactive management include fish stocking 
596 programs, aquatic restoration, and conservation of existing genetic diversity. Climate change 
597 could reduce population sizes and genetic variation as a species’ range shifts (Pauls et al. 2013). 
598 Managers may consider collecting individuals for use in future stocking efforts now, before 
599 such variation is reduced. It will be appropriate to account for future climatic conditions at a 
600 specific location when choosing genetic sources for fish stocking and wetland restorations 
601 (Havens et al. 2015). An effective strategy for restorations might be to use native species that 
602 are projected to occur in Indiana in the next century, but from genetic sources that occur in the 
603 southern portions of the species’ range and are therefore potentially more resistant to 
604 climaterelated impacts (Havens et al. 2015). At the same time, it is not manifest that southern 
605 populations will contain the most appropriate genetic variation to respond to climatic changes. 
606 Broad conservation of inter- and intra-population genetic diversity is critically important, and 
607 maintaining diverse aquatic habitat across systems should help limit loss of genetic material by 
608 preserving multiple populations of species at large effective sizes. 
609 
610 5.2 Improve understanding 
611 
612 An improved ability to anticipate specific climatic effects on aquatic systems in Indiana, 
613 including the cost-effectiveness of management actions available to counter potential negative 
614 effects, would clearly assist with management decisions. There remains a need for continued 
615 development and improvement of region- and state-specific climatic projections and resulting 
616 physico-chemical conditions in specific aquatic systems. Of note, we suggest that improved 
617 projections of future wind patterns are critical for anticipating effects in lacustrine systems. 
618 There is high uncertainty regarding future wind patterns but, as alluded to in this review, such 
619 patterns can have a strong influence on various characteristics of aquatic systems. 
620 
621 In addition to improving understanding of future physical conditions in aquatic systems, we 
622 advocate for studies to continue developing predictions of how specific populations and 
623 communities are expected to respond. Essentially, there is a need to advance understanding and 
624 predictive certainty of all steps in the cause-and-effect pathways, including interactive 
625 influences of other stressors, effects on vital rates, and ultimate effects on populations and 
626 communities. For example, consider Indiana’s cisco, arguably the fish species in the state most 
627 directly threatened by climate change. If cisco population extirpation rate continues as it has 
628 over the past 60 years, the species will be extinct in the state between the middle and end of the 
629 twenty-first century. However, this trajectory will almost certainly be affected by various 
630 unknowns. Will epilimnetic warming in Indiana’s glacial lakes accelerate in the future? How 



 

  
    
    

       
  

    
 

     
    
    

       
    

     
     

   
      

   
    

   
 

 
 

  
     

  
  

  
    

  
  

    
     

  
  

     
     

      
   

  
    

     
  

     
    

 
 

     
 

 
  

    
  

 
 

631 will future climatic conditions and land-use interact to structure thermal-oxygen patterns? Will 
632 hypolimnetic hypoxia become more severe? Have remaining Indiana cisco populations evolved 
633 to tolerate warmer temperatures and lower oxygen conditions? What is the capacity for such 
634 evolution in the future? Finally, what are the management options to counteract these effects? 
635 Can stocking counteract population declines? How cost-effective would hypolimnetic 
636 oxygenation be as a habitat improvement tool? 
637 
638 Improved predictions of how biota in specific aquatic systems may respond to climate change 
639 would clearly benefit the management of such biota. Moreover, for some systems in Indiana, 
640 elucidation of climatic effects on biota could provide important insights for other systems. 
641 Glacial lakes in northern Indiana constitute the southern extent of a distribution of glacially 
642 formed lakes through the upper Midwest of the USA and southern Canada. As such, they are 
643 expected to reach potentially critical thermal conditions earlier than more northern lakes and 
644 their biotic responses may be a harbinger of responses in more northern lakes. Similarly, 
645 Indiana contains the most southern and warmest region of Lake Michigan’s main basin, and 
646 responses in this region may foretell responses in northern areas of the lake (or even into Lake 
647 Huron). Further, Indiana contains a relatively high diversity of several aquatic taxa, including 
648 fishes and freshwater mussels. Community responses of these taxa may provide insights as to 
649 how diverse communities may respond in other regions. 
650 
651 5.3 The precautionary principle 
652 
653 The precautionary principle has been broadly advocated for in natural resource conservation 
654 (e.g., Lauck et al. 1998; Hilborn et al. 2001). Even in the absence of climate change, fishery 
655 management is rife with uncertainty due to fish stocks’ sensitivity to highly variable physical 
656 conditions, multiple non-linear biotic, and abiotic interactions which can magnify population 
657 dynamics and difficulty in assessing current and past status of fish stocks. Insufficiently 
658 accounting for this uncertainty and aggressive harvesting has contributed to declines and 
659 extirpation of fish stocks throughout the world. A more precautionary approach would 
660 hopefully contribute to limiting such deleterious effects. For brevity, the concept can be 
661 summarized by the Wingspread Statement on the Precautionary Principle (1998), “When an 
662 activity raises threats of harm to human health or the environment, precautionary measures 
663 should be taken even if some cause and effect relationships are not fully established 
664 scientifically.” We suggest that this principle should also guide management of Indiana’s 
665 aquatic ecosystems in the face of climate change. It is highly likely that aquatic ecosystems in 
666 Indiana and the biota which inhabit these systems will change dramatically in response to 
667 climate change. While some systems and species seem to be at greater risk to climate change 
668 than others, precisely pinpointing exactly how specific ecosystems, communities, and 
669 populations will respond is inappropriate. However, assuming there will be no change to these 
670 systems may be even more inappropriate and risky. Thus, we suggest aquatic ecosystem 
671 managers take a precautionary approach to (a) conserve and restore a diversity of aquatic 
672 systems and habitats, (b) actively work to maintain and enhance species diversity and both 
673 inter- and intra-population genetic variations, and (c) limit activities and stressors which may 
674 exacerbate the risk of decline for aquatic biota. 
675 
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