48,655 research outputs found

    Stability of quasi-two-dimensional Bose-Einstein condensates with dominant dipole-dipole interactions

    Full text link
    We consider quasi-two-dimensional atomic/molecular Bose-Einstein condensates with both contact and dipole-dipole interactions. It is shown that, as a consequence of the dimensional reduction, and within mean-field theory, the condensates do not develop unstable excitation spectra, even when the dipole-dipole interaction completely dominates the contact interaction.Comment: 4 pages of RevTex4, 3 figures; Rapid Communication in Physical Review A (to be published

    hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity

    No full text
    A considerable amount of attention has been given to discontinuous Galerkin methods for hyperbolic problems in numerical relativity, showing potential advantages of the methods in dealing with hydrodynamical shocks and other discontinuities. This paper investigates discontinuous Galerkin methods for the solution of elliptic problems in numerical relativity. We present a novel hp-adaptive numerical scheme for curvilinear and non-conforming meshes. It uses a multigrid preconditioner with a Chebyshev or Schwarz smoother to create a very scalable discontinuous Galerkin code on generic domains. The code employs compactification to move the outer boundary near spatial infinity. We explore the properties of the code on some test problems, including one mimicking Neutron stars with phase transitions. We also apply it to construct initial data for two or three black holes

    A Corollary for Nonsmooth Systems

    Full text link
    In this note, two generalized corollaries to the LaSalle-Yoshizawa Theorem are presented for nonautonomous systems described by nonlinear differential equations with discontinuous right-hand sides. Lyapunov-based analysis methods are developed using differential inclusions to achieve asymptotic convergence when the candidate Lyapunov derivative is upper bounded by a negative semi-definite function

    Large-scale calculations of supernova neutrino-induced reactions in Z=8-82 target nuclei

    Get PDF
    Background: In the environment of high neutrino-fluxes provided in core-collapse supernovae or neutron star mergers, neutrino-induced reactions with nuclei contribute to the nucleosynthesis processes. A number of terrestrial neutrino detectors are based on inelastic neutrino-nucleus scattering and modeling of the respective cross sections allow predictions of the expected detector reaction rates. Purpose: To provide a self-consistent microscopic description of neutrino-nucleus cross sections involving a large pool of Z = 8 - 82 nuclei for the implementation in models of nucleosynthesis and neutrino detector simulations. Methods: Self-consistent theory framework based on relativistic nuclear energy density functional is employed to determine the nuclear structure of the initial state and relevant transitions to excited states induced by neutrinos. The weak neutrino-nucleus interaction is employed in the current-current form and a complete set of transition operators is taken into account. Results: We perform large-scale calculations of charged-current neutrino-nucleus cross sections, including those averaged over supernova neutrino fluxes, for the set of even-even target nuclei from oxygen toward lead (Z = 8 - 82), spanning N = 8 - 182 (OPb pool). The model calculations include allowed and forbidden transitions up to J = 5 multipoles. Conclusions: The present analysis shows that the self-consistent calculations result in considerable differences in comparison to previously reported cross sections, and for a large number of target nuclei the cross sections are enhanced. Revision in modeling r-process nucleosynthesis based on a self-consistent description of neutrino-induced reactions would allow an updated insight into the origin of elements in the Universe and it would provide the estimate of uncertainties in the calculated element abundance patterns.Comment: 25 pages, 12 figures, submitted to Physical Review

    Study of Multimission Modular Spacecraft (MMS) propulsion requirements

    Get PDF
    The cost effectiveness of various propulsion technologies for shuttle-launched multimission modular spacecraft (MMS) missions was determined with special attention to the potential role of ion propulsion. The primary criterion chosen for comparison for the different types of propulsion technologies was the total propulsion related cost, including the Shuttle charges, propulsion module costs, upper stage costs, and propulsion module development. In addition to the cost comparison, other criteria such as reliability, risk, and STS compatibility are examined. Topics covered include MMS mission models, propulsion technology definition, trajectory/performance analysis, cost assessment, program evaluation, sensitivity analysis, and conclusions and recommendations

    Long-range beam-beam experiments in the relativistic heavy ion collider

    Full text link
    Long-range beam-beam effects are a potential limit to the LHC performance with the nominal design parameters, and certain upgrade scenarios under discussion. To mitigate long-range effects, current carrying wires parallel to the beam were proposed and space is reserved in the LHC for such wires. Two current carrying wires were installed in RHIC to study the effect of strong long-range beam-beam effects in a collider, as well as test the compensation of a single long-range interaction. The experimental data were used to benchmark simulations. We summarize this work.Comment: 12 pages, contribution to the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 Mar 201

    A mesocosm experiment investigating the effects of substratum quality and wave exposure on the survival of fish eggs

    Get PDF
    In a mesocosm experiment, the attachment of bream (Abramis brama) eggs to spawning substrata with and without periphytic biofilm coverage and their subsequent survival with and without low-intensity wave exposure were investigated. Egg attachment was reduced by 73% on spawning substrata with a natural periphytic biofilm, compared to clean substrata. Overall, this initial difference in egg numbers persisted until hatching. The difference in egg numbers was even increased in the wave treatment, while it was reduced in the no-wave control treatment. Exposure to a low-intensity wave regime affected egg development between the two biofilm treatments differently. Waves enhanced egg survival on substrata without a biofilm but reduced the survival of eggs on substrata with biofilm coverage. In the treatment combining biofilm-covered substrata and waves, no attached eggs survived until hatching. In all treatments, more than 75% of the eggs became detached from the spawning substrata during the egg incubation period, an

    Inflowing gas onto a compact obscured nucleus in Arp 299A: Herschel spectroscopic studies of H2O and OH

    Full text link
    Aims. We probe the physical conditions in the core of Arp 299A and try to put constraints to the nature of its nuclear power source. Methods. We used Herschel Space Observatory far-infrared and submillimeter observations of H2O and OH rotational lines in Arp 299A to create a multi-component model of the galaxy. In doing this, we employed a spherically symmetric radiative transfer code. Results. Nine H2O lines in absorption and eight in emission as well as four OH doublets in absorption and one in emission, are detected in Arp 299A. No lines of the 18O isotopologues, which have been seen in compact obscured nuclei of other galaxies, are detected. The absorption in the ground state OH doublet at 119 {\mu}m is found redshifted by ~175 km/s compared to other OH and H2O lines, suggesting a low excitation inflow. We find that at least two components are required in order to account for the excited molecular line spectrum. The inner component has a radius of 20-25 pc, a very high infrared surface brightness (> 3e13 Lsun/kpc^2), warm dust (Td > 90 K), and a large H2 column density (NH2 > 1e24 cm^-2). The outer component is larger (50-100 pc) with slightly cooler dust (70-90 K). In addition, a much more extended inflowing component is required to also account for the OH doublet at 119 {\mu}m. Conclusions. The Compton-thick nature of the core makes it difficult to determine the nature of the buried power source, but the high surface brightness indicates that it is either an active galactic nucleus and/or a dense nuclear starburst. The high OH/H2O ratio in the nucleus indicates that ion-neutral chemistry induced by X-rays or cosmic-rays is important. Finally we find a lower limit to the 16O/18O ratio of 400 in the nuclear region, possibly indicating that the nuclear starburst is in an early evolutionary stage, or that it is fed through a molecular inflow of, at most, solar metallicity.Comment: 14 pages, 13 figures, Accepted for publication in Astronomy and Astrophysic

    Readout Concepts for DEPFET Pixel Arrays

    Get PDF
    Field effect transistors embedded into a depleted silicon bulk (DEPFETs) can be used as the first amplifying element for the detection of small signal charges deposited in the bulk by ionizing particles, X-ray photons or visible light. Very good noise performance at room temperature due to the low capacitance of the collecting electrode has been demonstrated. Regular two dimensional arrangements of DEPFETs can be read out by turning on individual rows and reading currents or voltages in the columns. Such arrangements allow the fast, low power readout of larger arrays with the possibility of random access to selected pixels. In this paper, different readout concepts are discussed as they are required for arrays with incomplete or complete clear and for readout at the source or the drain. Examples of VLSI chips for the steering of the gate and clear rows and for reading out the columns are presented.Comment: 8 pages, 9 figures, submitted to Nucl. Instr. and Methods as proceedings of the 9th European Symposium on Semiconductor Detectors, Elmau, June 23-27, 200

    Modeling the H2O submillimeter emission in extragalactic sources

    Get PDF
    Recent observational studies have shown that H2O emission at (rest) submillimeter wavelengths is ubiquitous in infrared galaxies, both in the local and in the early Universe, suggestive of far-infrared pumping of H2O by dust in warm regions. In this work, models are presented that show that (i) the highest-lying H2O lines (E_{upper}>400 K) are formed in very warm (T_{dust}>~90 K) regions and require high H2O columns (N_{H2O}>~3x10^{17} cm^{-2}), while lower lying lines can be efficiently excited with T_{dust}~45-75 K and N_{H2O}~(0.5-2)x10^{17} cm^{-2}; (ii) significant collisional excitation of the lowest lying (E_{upper}<200 K) levels, which enhances the overall L_{H2O}-L_{IR} ratios, is identified in sources where the ground-state para-H2O 1_{11}-0_{00} line is detected in emission; (iii) the H2O-to-infrared (8-1000 um) luminosity ratio is expected to decrease with increasing T_{dust} for all lines with E_{upper}<~300 K, as has recently been reported in a sample of LIRGs, but increases with T_{dust} for the highest lying H2O lines (E_{upper}>400 K); (iv) we find theoretical upper limits for L_{H2O}/L_{IR} in warm environments, owing to H2O line saturation; (v) individual models are presented for two very different prototypical galaxies, the Seyfert 2 galaxy NGC 1068 and the nearest ultraluminous infrared galaxy Arp 220, showing that the excited submillimeter H2O emission is dominated by far-infrared pumping in both cases; (vi) the L_{H2O}-L_{IR} correlation previously reported in observational studies indicates depletion or exhaustion time scales, t_{dep}=Sigma_{gas}/Sigma_{SFR}, of <~12 Myr for star-forming sources where lines up to E_{upper}=300 K are detected, in agreement with the values previously found for (U)LIRGs from HCN millimeter emission...Comment: 13 pages, 13 figure
    • …
    corecore