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Abstract In a mesocosm experiment, the attachment of
bream (Abramis brama) eggs to spawning substrata with

and without periphytic biofilm coverage and their sub-

sequent survival with and without low-intensity wave
exposure were investigated. Egg attachment was reduced

by 73% on spawning substrata with a natural periphytic

biofilm, compared to clean substrata. Overall, this initial
difference in egg numbers persisted until hatching. The

difference in egg numbers was even increased in the wave

treatment, while it was reduced in the no-wave control
treatment. Exposure to a low-intensity wave regime

affected egg development between the two biofilm treat-

ments differently. Waves enhanced egg survival on
substrata without a biofilm but reduced the survival of eggs

on substrata with biofilm coverage. In the treatment com-

bining biofilm-covered substrata and waves, no attached

eggs survived until hatching. In all treatments, more than
75% of the eggs became detached from the spawning

substrata during the egg incubation period, and \1% of

these detached eggs survived within the substratum inter-
stices. Hence, detached eggs contributed little to the

reproductive success we observed. The implications of

these results on the spawning success of fish species that
use freshly inundated spawning substrata in shallow waters

are discussed.
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Introduction

The egg stage is a critical bottleneck for many fish species,

and egg survival is a major factor affecting year class
strength (Gafny et al. 1992; Fitzsimons et al. 2007; Probst

et al. 2009). Knowledge about biotic and abiotic factors
mediating egg survival, therefore, is important for the

management of fish stocks and fish population modelling.

A common strategy to improve egg survival is to select
a spawning habitat that ensures good conditions for egg

development. In many species, eggs are attached to

appropriate structures, preventing their relocation to less
favourable habitats (Zeh et al. 1989; Spence et al. 2007;

Steer and Moltschaniwskyj 2007). In lakes, these structures

are most commonly found in the littoral zone and include
plant material, woody debris, and bottom substrata (Fisher

et al. 1996; Poncin et al. 1996).

Sticky eggs adhere better to clean surfaces than to sur-
faces covered with periphytic biofilm (Gafny et al. 1992;

Probst et al. 2009). A preference for spawning substrata
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without biofilm and enhanced egg survival rates associated

with low biofilm coverage have been recorded for several
species, including lake sardines (Acanthobrama terrae-
sanctae) (Gafny et al. 1992), yellow perch (Perca
flavescens) (Fisher et al. 1996), and bream (Abramis bra-
ma) (Probst et al. 2009). Some fish species also clean their

spawning substratum before spawning, either by mouth or

using tail beating (Thorp 1988; Bruton and Gophen 1992).
Another common strategy is to spawn soon after a rise in

water level (Gafny et al. 1992; Ali and Kadir 1996; Ozen
and Noble 2002) because no biofilm has yet developed on

freshly inundated substrata. Because periphytic biofilm can

develop within 14 days or less (Gafny et al. 1992; Peters
et al. 2007), the window of opportunity in which fishes that

spawn in shallow water can benefit from biofilm-free

substrata is narrow.
In many temperate and boreal areas, the hydrological

regimes of freshwater systems show distinct annual

fluctuations: In winter, water levels are low because pre-
cipitation in the catchment area is withheld as snow, and in

spring and early summer, water levels increase due to

spring snowmelt. This water level increase creates freshly
inundated habitats in a predictable spatial and temporal

framework, which are utilised by many fish species for

spawning (Rupp 1965; Nõges and Järvet 2005; Probst et al.
2009).

Waves also have the potential to affect the reproductive

success of fish. Studies on the effects of waves have, so far,
focused predominantly on severe impacts of waves, such as

temporary dewatering of fish eggs and larvae by ship-

induced water level drawdown (Holland 1986, 1987;
Niepagenkemper 2004). Less attention has been paid to

less drastic, long-range effects of ships. In large lakes,

ships pass the shore at a distance of several hundred meters,
but their waves can travel several kilometres, and thus can

reach even remote shorelines (Hofmann et al. 2008). Even

though the energy flux of these waves is low, they may be
ecologically relevant, especially in combination with bio-

film coverage on spawning substrata, which impedes egg

attachment (Probst et al. 2009).
This mesocosm experiment investigated the combined

effects of biofilms and low-intensity waves on the survival

of eggs of shallow water spawning fish, using bream
(Abramis brama) as a model species. Three particular

questions were raised:

1. Does biofilm coverage affect egg attachment on a

natural spawning substratum?

2. Is hatching success on a biofilm-covered and a biofilm-
free natural spawning substratum mediated by a

realistic low-intensity wave scenario?

3. How much do detached eggs contribute to total egg
survival?

By answering these questions, this study aimed at

improving our understanding of the environmental factors
regulating year class strength, which is necessary to under-

stand the demographic dynamics of fish populations.

Furthermore, knowledge of the mechanistic responses
of organisms to environmental variables is necessary to

predict the reaction of these organisms to a changing

environment.

Materials and methods

Model species

Bream were used as a model species for fish with sticky

eggs that spawn in the spring in shallow waters. Bream are
common in temperate parts of Europe, where they pre-

dominantly occur in mesotrophic to eutrophic lakes and in

the potamal sections of rivers, but also in oligotrophic lakes
such as Lake Constance (Löffler 1984). In their distribution

range, bream spawn between April and June, depending on

latitude, which is correlated with water temperature
(Backiel and Zawisza 1968). In Lake Constance, where this

experiment was performed, the spawning period usually

lies between the end of April and the middle of May.
During this period, aggregations of mature bream enter the

littoral zone and spawn at water depths shallower than

40 cm (Wittkugel 2002). Bream generally prefer cobble or
gravel beaches and submerged or emergent vegetation for

spawning (Poncin et al. 1996). In many large pre-alpine

lakes, submerged vegetation is typically absent during the
bream spawning period, and bream spawn on non-vege-

tated cobble beaches. These conditions were simulated in

this mesocosm experiment. However, as almost all kinds of
spawning substrata develop a biofilm layer on their sur-

faces (Albay and Akcaalan 2003), the results of this study

should be transferable to other spawning substrata as well.

Experimental setup

Experiments were conducted in May 2007, using two

identical outdoor mesocosms with base dimensions of

10 9 1 m and a water depth of 0.9 m. A slope was
installed at one end of each mesocosm. The slope was

formed by a metal grid covered with canvas and topped by

a 5 cm thick layer of gravel (grain size 1–2 cm). The slope
was divided into an upper and lower section, separated at

0.2 m water depth by a 1 m long horizontal plateau. The

upper slope rose above the water level (Fig. 1a). In one
mesocosm, an air pressure driven wave generator was

installed at the non-sloping end. The second mesocosm

served as a no-wave control. Six wave pulses per hour of
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3-min duration each were created between 9:00 and
20:00 h, and two pulses per hour of 3 min duration were

created between 20:00 and 9:00 h. The wave period (T) was
1.2 s; maximum current velocities (umax) were 0.3 to
0.4 m s-1 at 0.2-m water depth, resulting in energy fluxes

(EF) of approximately 20 W m-1. This regime mimicked a

moderately exposed area of the shore of Lake Constance as
realistically as possible with respect to number of wave

events caused by scheduled ship traffic, energy flux by ship

waves (EF = 14 W m-1 in April, 25 W m-1 in May)
and maximum current velocities (umax & 0.4 m s-1)

(Hofmann 2007; Hofmann et al. 2008). The wave period of

1.2 s, however, was shorter in the mesocosm than at the
reference site (T = 2.9–3.7 s for ferry and passenger ship

waves) due to restrictions in the dimensions of the

mesocosm.
The mesocosms were flow-through systems that were

fed with lake water. The water inlet was situated on the
sloping end of the mesocosm, and the outlet was at

the opposite end. The flow rate was adjusted to maintain the

water temperature as closely as possible to 14"C, ensuring
optimal bream egg development (Herzig and Winkler

1986). The water exchange rate ranged between 0 and

5.4 L min-1, the latter corresponding approximately to a
complete change of water in the mesocosm during a period

of 24 h. To prevent thermal stratification, particularly in the

no-wave control, both mesocosms were aerated by com-
pressed air and limestone diffusers in the lower slope area,

creating a constant water circulation. Actual temperatures

throughout the experiment were 14.0 ± 1.3"C in the pla-
teau area of the wave mesocosm and 14.7 ± 1.1"C in the

plateau area of the no-wave control (mean ± SD). This

temperature difference proved to be insignificant (paired t
test: n = 18, df = 1, t = 1.05, p = 0.34).

Twenty-four trays with base dimensions of 30 9 24 cm

and a height of 3.5 cm were filled to a depth of 2–3 cm
with natural bottom substratum, including all of its bacte-

rial, algal and invertebrate biota, from the upper eulittoral

zone of Lake Constance. Grain size composition [fraction f
(mm), contribution c (%, mean ± SD), n = 3, m = 250 g

per sample) was f\ 0.63: c = 5.5 ± 4.2; f = 0.63–2.0:

c = 17.5 ± 11.3; f = 2.0–6.3: c = 4.2 ± 0.3; f = 6.3–20:
c = 72.8 ± 15.5. Six cobbles of 9–11 cm diameter and

3–5 cm height were embedded in each substratum tray.

The trays were pre-exposed to water in Lake Constance at
30 cm water depth from 14 March 2007 until the beginning

of the experiment on 8 May 2007 so that all substratum

surfaces were able to develop a natural periphytic biofilm.
The position of the trays was continually adjusted so that

they remained at 30 cm water depth during the entire

exposure period in the lake. The developing periphytic
biofilm mainly consisted of benthic diatoms, heterotrophic

bacteria and cyanobacteria. On 8 May 2007, the trays were

removed from the lake and placed in a lake water tank to
prepare the different experimental substrata conditions.

One half of the embedded cobbles were allowed to retain
their biofilm, while the other half was cleaned by brushing.

To test the efficacy of cleaning, the biofilm on 20 cobbles

was sampled before and after brushing with a brush suction
sampler as described in Peters et al. (2005). The samples

were filtered on glass fibre filters, and ash-free dry mass

(AFDM) and inorganic matter content (IM) were deter-
mined. Before brushing, AFDM of 0.53 ± 0.18 mg cm-2

(mean ± SD) and IM of 11.5 ± 7.0 mg cm-2 were pres-

ent on the cobbles. Brushing cobbles was shown to remove
95% of total biofilm mass, with 0.15 ± 0.07 mg cm-2 of

AFDM and 0.43 ± 0.34 mg cm-2 of IM remaining.

Experiment procedures

Adult bream were caught in Lake Constance by gill- and
trap-netting in April 2007 and kept in a 13 m3 flow-through

outdoor tank. On the morning of 9 May 2007, all cobbles

were placed randomly in shallow containers filled with lake
water to a depth of 25 cm. Eggs and milt were stripped

from two female and two male bream, respectively, and

Fig. 1 a Setup of the wave
mesocosm. A second, identical
mesocosm without a wave
machine was used for the no-
wave control treatment.
bDesign of the trays. Six cobbles,
which were used as spawning
substrata, were embedded in
sediment from the upper littoral
zone of Lake Constance. Three
cobbles per tray were covered
with biofilm (dark grey), three
cobbles were bare (white). A
mark at one corner of the tray
identified each tray and gave each
cobble an individually
identifiable position in the tray
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mixed to fertilise the eggs. The fertilised eggs were then

sprinkled evenly over all cobbles in the containers. Sub-
sequently, the cobbles were allowed to rest in the

containers for 2 h to allow the adhesion of the eggs. Then,

the number of eggs adhering to each individual cobble was
counted, and six cobbles were placed back in each sub-

stratum tray, three with biofilm coverage and three without

(Fig. 1b). Trays were marked and the position of each
cobble within a tray was noted, such that individual cob-

bles could be identified throughout the experiment. The
trays were introduced carefully into the two mesocosms

and placed on the horizontal plateau at 0.2 m water depth

(Fig. 1a).
On the morning of the first, third, sixth and ninth day of

the experiment, three randomly chosen trays were carefully

sampled from each mesocosm. The viable and dead eggs
on each individual cobble were counted. Eggs were clas-

sified by eye as being viable, if they were clear, or from

day 3 onwards, they were classified as to whether an
embryo was visible inside. Eggs that were opaque or had

ruptured shells were considered to be dead (Oyen et al.

1991). The cobbles were removed from the trays, and the
substratum within each tray was examined for detached

eggs, which were also counted and identified as viable or

dead. By day 9, almost all of the remaining eggs had hat-
ched. This final sampling confirmed that the predicted

incubation period of 7.1–8.0 day that has been calculated

for bream eggs at average temperatures of 14.0–14.7"C by
Herzig and Winkler (1986) was met and that egg devel-

opment was normal. Thus, eggs that were viable on day 6

were regarded as having survived until hatching, and
samples taken at day 9 were not used for statistical anal-

ysis. Therefore, a total of only 18 trays (day 1, 3 and 6)

with six cobbles each were used in the statistical analysis.
In a separate experiment, the decay of dead eggs was

investigated. Five polyethylene beakers ([ = 5 cm,

100 ml) were filled with the same substratum that was used
in the trays to a height of 2–3 cm. The beakers were placed in

a water bath at a constant temperature of 14"C, and water

exchange was provided by permanent dripping of lake water
into the beakers. Twenty unfertilised breameggswere placed

into each beaker, and from day 2 onwards, each beaker was

carefully checked daily for remaining eggs. Unfertilised
eggs were used because no freshly dead intact fertilised

bream eggs could be obtained. It was assumed that unferti-

lised and fertilised dead bream eggs decay at the same rate.

Statistics

Initial egg attachment was analysed with the Wilcoxon test.

The fate of attached eggs until hatching was analysed using

a generalised linear model (GLM) with binomial errors.
Individual cobbles were used as replicates, and binomial

data included the counts of viable eggs and the difference

between initially attached eggs and the present number of
viable eggs at the time of sampling. The analysis started

with a full factorial model containing egg development

time (1, 3, 6 days post fertilisation), periphytic biofilm
coverage (biofilm, clean) and wave treatment (wave, no

wave) as independent variables. Using the ‘step’ routine in

the statistical software package R, the complexity of the
GLM was reduced, stepwise, until a minimal Akaike

Information Criterion (AIC) was achieved.
The effects of biofilm and waves on hatching success,

i.e., survival at day 6 post fertilisation, were tested with

Wilcoxon-tests. For the analysis of total survival, the
numbers of surviving attached and detached eggs were

summed. To make the survival of attached and detached

eggs comparable on the basis of eggs per cobble, the viable
eggs that were found in the interstitial space of the sub-

stratum of each tray were assigned to the individual

cobbles in that tray according to the number of eggs that
had been attached to them at the start of the experiment.

We are aware that, with only two mesocosms, our rep-

licates are not fully independent, but rather in a strict sense,
they are pseudoreplicates (Hurlbert 1984). This may be

relevant, as pathogens that affect eggs may spread between

the replicates within a mesocosm. However, as only two
identical mesocosms were available, this flaw in the

experimental design could not be avoided. The experiment

could also not be replicated temporally as bream eggs were
only available once.

Results

Mesocosm experiment

Egg attachment

The mean number of eggs that initially attached to clean

cobbles was 3.7 times higher than the number adhering to

cobbles with biofilm coverage (Fig. 2), with 86.1 ± 67.5
and 23.5 ± 21.6 eggs per cobble (mean ± SD), respec-

tively (Wilcoxon, n = 108, df = 1, z = 6.3, p\ 0.001).

Egg attachment was highly variable between replicate
cobbles because each replicate consisted of a natural cob-

ble differing in rock type and shape. Eggs adhered better to

flat or concave areas of cobbles and less well to convex
parts of the surfaces.

Egg development

In all treatments, only a small fraction of eggs remained

attached and survived until hatching (Fig. 3a–d). Some
eggs died but remained attached, and a small fraction of the
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eggs was found alive or dead in the interstitial space of the

substratum in the trays. However, the largest fraction of
the eggs ([75% in all treatments) disappeared throughout

the experiment.

Our GLM including all sampling days throughout egg
development (days 1, 3, 6) showed that the proportion of

viable eggs decreased significantly throughout the experi-

ment (Fig. 4a, b; Table 1). Furthermore, throughout the
period of egg development, more viable eggs were found

on clean cobbles than on cobbles with biofilm coverage.
For all cobbles and sampling days, significantly more

viable eggs were found on cobbles with than without bio-

film. Exposure to waves affected egg survival. However,
the effect differed between clean cobbles and cobbles with

biofilm, as indicated by the significant interaction term

wave 9 biofilm. While waves had a detrimental effect on
the development of attached eggs on cobbles with biofilm,

they favoured egg development on clean cobbles (Fig. 4a,

b; Table 1).Fig. 2 Number of eggs initially attaching to cobbles with and without
biofilm coverage. The lines give the mean values

Fig. 3 Overview over the fate
of the eggs throughout the
experiment in the four treatment
combinations biofilm-no wave
(a), clean-no wave (b), biofilm-
wave (c), and clean-wave (d).
Number of viable eggs (black),
followed below by dead eggs
(medium grey), viable detached
eggs (dark grey) and dead
detached eggs (light grey). The
difference to the initial egg
number (white) represents the
number of eggs that disappeared
throughout the experiment
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Hatching success

Initial differences in the number of attached eggs between

the biofilm-covered and clean cobbles persisted until
hatching in the wave treatment (Wilcoxon: n = 18, df = 1,

z = 2.8, p = 0.005), while in the no-wave control, the
initial difference in the number of eggs decreased, and

there was only a non-significant trend of different hatching

success between the biofilm-covered and clean cobbles
(Wilcoxon: n = 18, df = 1, z = 1.5, p = 0.129). The

trend we observed was that waves decreased hatching

success on cobbles with biofilm (Wilcoxon: n = 18,
df = 1, z = -1.8, p = 0.080), while no effect of waves

could be found on clean cobbles (Wilcoxon: n = 18,

df = 1, z = 0.3, p = 0.790).

From the large proportion of eggs that was detached

throughout the experiment, only a very small fraction

survived in the sediment interstices. The trend we observed
was that fewer detached eggs survived in the wave treat-

ment than in the no-wave control (0.1 ± 0.1% and

0.8 ± 0.5%, respectively (mean ± SE); the Wilcoxon test
result on numerical survival of detached eggs per tray:

n = 6, df = 1, z = 1.7, p = 0.099).

Due to poor survival of detached eggs, total egg survival
was virtually identical with the survival of attached eggs

(Fig. 4c), and statistical analyses of total egg survival

yielded the same results as the analyses of survival of
attached eggs (Wilcoxon-tests).

Egg decay experiment

The egg decay experiment showed that dead eggs decayed

quickly. No remains of eggs were found later than day 6
after the start of the experiment (Fig. 5).

Discussion

On clean cobbles, 3.7 times more eggs initially attached

compared to biofilm-covered cobbles. Cobbles are the

natural spawning substrata of bream in many lakes. Unlike
previous studies that used artificial substrata (Gafny et al.

1992: bricks; Probst et al. 2009: ceramic tiles), egg

Fig. 4 a Number and b
percentage of viable attached
eggs per cobble throughout the
experiment in the four treatment
combinations with (white) and
without (black) biofilm
coverage and with (circle) and
without (triangle) wave
exposure. c Egg survival until
hatching at day 6 post
fertilisation (dpf6) between the
four different treatment
combinations. Survival of
attached eggs on biofilm-
covered (white) and clean
(black) cobbles. Survival of
detached eggs is added on top of
each column (grey). Statistical
results of Wilcoxon-tests are
indicated. All values are
mean ± SE

Table 1 Results of the generalised linear model with binomial errors
analysing survival of attached eggs during the experiment

Factors df Z P

Dpf 1 -23.9 <0.001

Wave 1 -5.1 <0.001

Biofilm 1 4.5 <0.001

Dpf 9 Wave 1 -1.4 0.153

Wave 9 Biofilm 1 9.5 <0.001

The model was reduced stepwise until the minimal Akaike Infor-
mation Criterion of 1,081.3 was reached, n = 108

Dpf days post fertilisation
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attachment was highly variable between our replicate nat-
ural cobbles, which differed in rock type and shape. While

the use of uniform substrata seems better suited to inves-

tigate the principal variables affecting egg survival, the use
of natural substrata is required to quantify the effects of

these variables in situ and to study their interactions. Data
resulting from experiments using these natural substrata are

best suited for fish stock management purposes. However,

high variability in the data leads to statistically less clear
patterns. Therefore statistical trends (0.05\ p\ 0.15) also

are mentioned and discussed.

The effect of biofilms was largely limited to the inhi-
bition of initial egg attachment, as the initial difference in

the number of eggs between the cobbles with and without

biofilm was virtually conserved throughout the whole
experiment until hatching. Other studies have also reported

negative effects of biofilms during the developmental

period of eggs, e.g., due to allelopathic substances excreted
by the biofilms (Oberemm et al. 1997; Probst et al. 2009) or

a high prevalence of pathogens on biofilm-covered sub-

strata (Gafny et al. 1992).
The effect of waves on egg survival rates of attached

eggs differed between substrata with and without biofilm.

Survival rates were increased by waves on biofilm-free
substrata, while wave exposure hampered the egg survival

rate on substrata with biofilm coverage. Thus, we hypoth-

esise that waves detached eggs from the cobbles where
they were not well attached due to the biofilm, while waves

removed less eggs on clean cobbles, where eggs were more

firmly attached. Steady water exchange around the eggs
may have even improved the oxygen supply and reduced

the accumulation of pathogens, leading to a higher survival

rate of these eggs. However, at high current velocities and
energy fluxes that can be caused by storms or by ships

passing close to a spawning site, waves may also depress

egg survival at sites with clean spawning substratum. High-
intensity waves have already been shown to be an impor-

tant habitat factor influencing egg survival of shallow water

spawning fish (Rupp 1965; Fitzsimons et al. 2007).
In the wave treatment, the detrimental effect of the

biofilm was preserved until hatching, as loosely attached

eggs were washed off of the cobbles. In the no-wave
treatment, egg survival on the natural cobbles was highly

variable, obscuring the effect of the biofilm. Hence, no
statistically significant difference could be found, but

rather, only a trend could be seen. However, in the no-wave

treatment, three times more eggs survived on clean than on
biofilm-covered cobbles.

A large fraction of the eggs failed to attach to the cob-

bles or became detached during the experiment. Not all of
these detached eggs necessarily die, as some may survive

in the interstitial space of the substratum (Rupp 1965; Mills

1981; Gafny et al. 1992). However, in this experiment only
0.1 ± 0.1% and 0.8 ± 0.5% of the detached eggs survived

in the wave and in the no-wave control treatments,

respectively. Hence, the contribution of detached eggs to
the total survival of eggs was low, and total egg survival

was almost identical to the survival of the attached eggs.

This result underlines that the selection of a suitable
spawning site is crucial for a fish to maximise its repro-

ductive success.

We observed a trend that fewer detached eggs survived
in the wave compared to the no-wave treatment, probably

because suspended particles abraded the eggs in the wave

treatment, destroying them completely or making them
more susceptible to pathogens or other harmful substances.

Hofmann (2007) calculated that the waves generated in the

type of mesocosm we used in these experiments are able to
remobilise particles with a grain size of 1.2 mm at a water

depth of 0.2 m, which was characteristic of a considerable

fraction of the substratum used in this study.
Overall, the rate of egg survival until hatching in the

experiment was low. High egg mortality is typical for

broadcast-spawning fish species with high egg numbers
that do not exhibit parental care (Rupp 1965; Gafny et al.

1992; Zorn et al. 1998). Dead eggs have been shown to

decay rapidly, which can explain the large proportion of
the eggs that disappeared throughout these experiments.

The results of this study are relevant for the manage-

ment of fish stocks that spawn in shallow waters. The
spawning period of most of these fish coincides with water

level increases. In Central Europe, regular and pronounced

water level increases are commonly associated with snow
melt in spring. Whether fish will spawn on substrata that

are covered by biofilm or on freshly inundated pristine

substrata without biofilm coverage depends on the ampli-
tude of the water level increase shortly before the spawning

Fig. 5 Percentage of remaining eggs (mean ± SE) in the egg decay
experiment. An exponential decay model was fitted to the data, giving
the percentage of remaining eggs ER as a function of time t.
ER = 102.15 9 e-0.4605t; R2 = 0.98
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period. The amplitude and timing of water level increases

in spring is highly variable between years. At Lake Con-
stance, which is a large (surface area 571 km2),

unregulated pre-alpine lake, spring water level increases,

measured as the difference in the mean water level in
April and May, varied between -18 and 128 cm in the

last 60 years (gauge Konstanz, ELWIS, Wasser- und

Schifffahrtsverwaltung des Bundes). Maximum daily
increases of 19 cm, and weekly increases of 47 cm,

occurred in this period. In combination with variable wave
exposure at the spawning sites, biofilm coverage can sig-

nificantly influence the reproductive success of bream and

other fish species that spawn in shallow water.
An increasing proportion of freshwater systems have

become regulated to provide drinking and irrigation water,

hydroelectric energy, or prevent flooding (Leira and
Cantonati 2008). Because of this, water level fluctuations

are increasingly buffered or artificially pulsed, disrupting

adaptations to the natural dynamics of water levels in many
species (Aroviita and Hämäläinen 2008; Sutela and

Vehanen 2008). In fish that rely on biofilm-free spawning

substrata, reproductive success may be impaired in such
environments.

Climate change can also produce a mismatch between

the spawning period of fishes and water level increases in
spring. Spawning is often controlled by photoperiod (Potts

and Wootton 1984; Dabrowski et al. 1996; Migaud et al.

2006) and is, therefore, highly fixed in timing, while the
peak water level increase is currently shifted earlier in the

year. Furthermore, in many regions, winter precipitation

will be partially shifted from snow to rain. This will ulti-
mately lead to greater runoff in winter and to earlier, less

pronounced meltwater peaks in spring (Christensen et al.

2007).
This general forecast of large-scale climate models is

congruent with regional predictions for southern Germany

(KLIWA 2006), where the present study was performed. In
Lake Constance, the winter water level has increased by

approximately 2 mm per year since 1931. At the same

time, summers have become drier, and average summer
water levels have been reduced by approximately 5 mm

per year (Ostendorp et al. 2004). These trends in Lake

Constance are, at least partially, due to climate change
(Jöhnk et al. 2004). Higher water levels in the winter and

lower water levels in summer, which lead to a reduction in

the amplitude of the water level increase in spring, will
reduce suitable spawning habitats for spring shallow water

spawning fish that rely on clean spawning substrata.

Wave exposure is also forecasted to increase in lakes in
Europe and other regions worldwide. In many regions,

stronger and more frequent wind events are predicted

(KLIWA 2006; Christensen et al. 2007). Exposure to
anthropogenic waves in addition to naturally occurring

waves also is increasing because both commercial and

recreational shipping intensities have grown in recent years
(Mührle et al. 2004; European Commission 2006b) and are

predicted to continue growing (European Commission

2006a). In some lakes, shipping already contributes more
than 50% to the wave energy flux during parts of the year

(Hofmann et al. 2008).

To date, most studies that have been conducted on the
influence of climate change and other anthropogenic

impacts on freshwater fish have focused on the direct
effects of increasing temperature (Daufresne et al. 2003;

Daufresne and Boët 2007; Sharma et al. 2007). The data

presented in this study suggest that considering tempera-
ture alone may give an incomplete picture of the possible

effects of climate change on local fish populations and that

other factors, such as changes in hydrological and hydro-
dynamic regimes, should receive more attention.
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Daufresne M, Boët P (2007) Climate change impacts on structure and
diversity of fish communities in rivers. Global Change Biol
13:2467–2478

Daufresne M, Roger MC, Capra H, Lamouroux N (2003) Long-term
changes within the invertebrate and fish communities of the

516 S. Stoll et al.
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