171 research outputs found

    Lagrangian statistics in the South Atlantic as derived from SOS and FGGE drifters

    Get PDF
    Daily averaged positions obtained from satellite-tracked drifting buoys launched during the First GARP Global Experiment (FGGE) and those launched as part of the ONR sponsored Southern Ocean Studies (SOS) are used to analyze eddy diffusivity due to mesoscale motions and its parameterization in some regions of the South Atlantic Ocean, significantly extending the energy range for which this type of estimations are available. Diffusion coefficients, Lagrangian integral time scales and velocity variances are calculated, and Taylor\u27s (1921) Theorem which relates eddy diffusivity estimates with the dispersion of particles from a fixed origin is tested. In all of the cases analyzed here, the anisotropy of the statistics appears as an outstanding feature, with zonal values being larger than meridional ones. Although the conditions of stationarity and homogeneity of the statistics required by Taylor\u27s Theorem are not fulfilled, a positive test for relation was observed for small lags. However, for later times, diffusion and dispersion curves have a tendency to diverge due to the influence of mean current shear. This interpretation is evident in the large differences between diffusion and dispersion in the Brazil/Malvinas extension where there is substantial current shear and a very close agreement between the curves in the gyre interior where the shear is small. The relationship between the diffusion coefficients and eddy velocity statistics for different regimes in the gyre are explored with the conclusion that it is impossible to decide between the hypothesis that the diffusion is proportional to the eddy velocity, i.e. mixing-length theory applies, and the alternate case of the diffusion scaling with the velocity variance or eddy energy. The implications this has to any global parameterization of eddy diffusion is discussed

    A Methodology for Classifying Search Operators as Intensification or Diversification Heuristics

    Get PDF
    Selection hyper-heuristics are generic search tools that dynamically choose, from a given pool, the most promising operator (low-level heuristic) to apply at each iteration of the search process. The performance of these methods depends on the quality of the heuristic pool. Two types of heuristics can be part of the pool: diversification heuristics, which help to escape from local optima, and intensification heuristics, which effectively exploit promising regions in the vicinity of good solutions. An effective search strategy needs a balance between these two strategies. However, it is not straightforward to categorize an operator as intensification or diversification heuristic on complex domains. Therefore, we propose an automated methodology to do this classification. This brings methodological rigor to the configuration of an iterated local search hyper-heuristic featuring diversification and intensification stages. The methodology considers the empirical ranking of the heuristics based on an estimation of their capacity to either diversify or intensify the search. We incorporate the proposed approach into a state-of-the-art hyper-heuristic solving two domains: course timetabling and vehicle routing. Our results indicate improved performance, including new best-known solutions for the course timetabling problem

    Revisiting the Crystal Structure of BaCe0.4Zr0.4Y0.2O3-ÎŽ Proton Conducting Perovskite and Its Correlation with Transport Properties

    Get PDF
    Oxides with proton conductivity have a great potential for applications in environmental energy technology. Despite the BaCe0.4Zr0.4Y0.2O3-ÎŽ (BCZY) perovskites being well-known proton conductors, it is a challenge to determine the optimal operating temperature range where the energy applications benefit most from this unique property. The protonic transport properties strongly depend on crystal structure and local distortions in the participating cation coordination sphere, according to related temperatures and gas feed. The transport and crystallographic properties of BCZY were simultaneously studied by impedance spectroscopy (IS) and synchrotron X-ray diffraction (S-XRD). A strong correlation between conductivity and the lattice parameter, corresponding in principle to a cubic symmetry, was observed, mainly between 400 and 700 °C. The protonic conductivity range was analyzed by the H/D isotopic effect on the impedance spectra, which helped to identify protonic conduction as the governing transport mechanism below 600 °C, while the transport via oxygen vacancies dominates above this temperature. In order to assess the real crystallographic structure, the simultaneous refinement of laboratory XRD and neutron diffraction (ND) patterns was performed. According to this, BCZY changes from rhombohedral symmetry below 400 °C to cubic at 600 °C in a second-order phase transition. Complementary quasielastic neutron scattering (QENS) enables us to determine a protonic jump length of 3.1 Å, which matches the O-O distances in the octahedral oxygen coordination sphere around the cations. These results support the protonic self-diffusion through proton hopping between intraoctahedral O sites as the main transport mechanism up to 600 °C.Fil: Basbus, Juan Felipe. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; ArgentinaFil: Arce, Mauricio DamiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; ArgentinaFil: Napolitano, Federico Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; ArgentinaFil: Troiani, Horacio Esteban. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; ArgentinaFil: Alonso, JosĂ© Antonio. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Saleta, Martin Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; Argentina. Centro Nacional de Pesquisa em Energia e Materiais; BrasilFil: GonzĂĄlez, Miguel A.. Institut Laue Langevin; FranciaFil: Cuello, Gabriel Julio. Institut Laue Langevin; FranciaFil: FernĂĄndez DĂ­az, MarĂ­a Teresa. Institut Laue Langevin; FranciaFil: Pardo Sainz, Miguel. Universidad de Zaragoza. Instituto de Ciencias de Materiales de Aragon; EspañaFil: Bonanos, Nikolaos. Technical University of Denmark; DinamarcaFil: Jimenez, Catalina Elena. Helmholtz-Zentrum; AlemaniaFil: Giebeler, Lars. No especifĂ­ca;Fil: Figueroa, Santiago J. A.. Centro Nacional de Pesquisa em Energia e Materiais; BrasilFil: Caneiro, Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; ArgentinaFil: Serquis, Adriana Cristina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; ArgentinaFil: Mogni, Liliana VerĂłnica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche | ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a. Unidad Ejecutora Instituto de Nanociencia y NanotecnologĂ­a - Nodo Bariloche; Argentin

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Cation occupancy in bimagnetic CoO-core/Co1−xZnxFe2O4-shell (x = 0-1) nanoparticles

    No full text
    In this work, we studied the cation occupancy of bimagnetic CoO/Co1−xZnxFe2O4 core/shell nanoparticles by means of X-ray absorption and Mössbauer spectroscopies, which provide element-sensitive information at the atomic scale. Our results indicate that, although the spinel ferrite forms a multi-grain shell, the Zn cations occupy solely tetrahedral sites, while the Co cations are mostly in the octahedral site. On the other hand, the Fe cations are distributed in both tetrahedral and octahedral sites for all concentrations. Also the results provide evidence for a Zn-deficient spinel with an excess of Co cations in the shell, whose origin is further rationalized in terms of the two-step synthesis process. In overall, this work gives a description of the cation occupancy in the core/shell nanoparticles and can serve as a guide to the interpretation of the magnetic properties of complex bimagnetic systems for future technological applications.Fil: Lavorato, Gabriel Carlos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Saleta, Martin Eduardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Figueroa, S.J. A.. Brazilian Center for Research in Energy and Materials; BrasilFil: Tobia, Dina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Mauricio, J. C.. Centro Nacional de Pesquisa Em Energia E Materiais; BrasilFil: Lohr, Javier HernĂĄn. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Baggio Saitovitch, E.. Centro Brasileiro de Pesquisas FĂ­sicas; BrasilFil: Troiani, Horacio Esteban. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Lima, Enio Junior. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentin

    Frequency of BRAF V600E Mutation in the Mexican Population of Patients With Metastatic Melanoma

    No full text
    Purpose: The BRAF V600E mutation has been described in melanomas occurring in the Caucasian, European, and Asian populations. However, in the Mexican population, the status and clinical significance of BRAF mutation has not been researched on a large scale. Methods: Consecutive BRAF-tested Mexican patients with metastatic melanoma (n = 127) were analyzed for mutations in exon 15 of the BRAF gene in genomic DNA by real-time polymerase chain reaction technology for amplification and detection. The results were correlated with the clinical-pathologic features and the prognosis of the patients. Results: The frequency of somatic mutation V600E within the BRAF gene was 54.6% (43 of 127 patients). Nodular melanoma was the most prevalent subtype in our population, with BRAF mutations in 37.2% (16 of 55 patients). In contrast, superficial spread had a frequency of 18.6% BRAF mutation (eight of 24). Other clinicopathologic features were assessed to correlate with the mutation status. Conclusion: This study searched for the most prevalent BRAF V600E mutation type in melanoma in a heterogeneous population from Mexico. Nodular melanoma was found to be the most prevalent in metastatic presentation and the presence of BRAF V600E mutation, perhaps related to the mixed ancestry; in the north, ancestry is predominantly European and in the south, it is predominantly Asian. The outcomes of the mutation correlations were similar to those found in other populations

    Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count?

    Get PDF
    Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naĂŻve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1ÎČ correlated directly with CD4+ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/ÎŒL (accuracy = 0.93, Îș-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied
    • 

    corecore