85 research outputs found

    Variations of biochemical and hematic parameters following Taoist qigong practice

    Get PDF
    Qigong is an ancient Chinese psychosomatic discipline which employs specially designed body movements to achieve mind-body integration, preserve health, and pursue longevity. The Taoist school of qigong, one of the main traditions within this Chinese discipline, has a particular approach that emphasizes naturalness for the achievement of those goals. Albeit diverse methods of qigong have already been shown to display significant psychobiological effects, Taoist qigong has been scarcely investigated to date. Thus, this research was carried out with the aim of shedding light on the effects of Taoist qigong on biochemical and hematic parameters measured shortly after practice. Forty five naive subjects participated in the study, twenty-eight in the experimental group and the rest in the control group. Experimental subjects underwent a qigong training program consisting of three half-hour guided sessions per week, for the period of one month. Blood samples for the quantification of biochemical and hematic parameters were drawn from all subjects the day before the experiment commenced and one hour after the last session of practice concluded. Analysis of covariance (ANCOVA) was performed as statistical analyses. Our results showed that after completing the qigong program, experimental subjects displayed lower levels of serum albumin, as well as lower values of Mean Corpuscular Hemoglobin (MCH) and Mean Corpuscular Hemoglobin Concentration (MCHC), when compared to control. These findings, therefore, reveal that the practice of Taoist qigong for a short period of one month exerted a peculiar biochemical and hematimetric influence, which suggests interesting psychobiological and clinical implications.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition

    Get PDF
    Antibodies targeting citrullinated proteins (ACPAs [anticitrullinated protein antibodies]) are commonly found in patients with rheumatoid arthritis (RA), strongly associate with distinct HLA-DR alleles, and predict a more aggressive disease course as compared with seronegative patients. Still, many features of these antibodies, including their site of production and the extent of MHC class II–driven T cell help, remain unclarified. To address these questions, we have used a single B cell–based cloning technology to isolate and express immunoglobulin (Ig) genes from joint-derived B cells of active RA patients. We found ∼25% of synovial IgG-expressing B cells to be specific for citrullinated autoantigens in the investigated ACPA+ RA patients, whereas such antibodies were not found in ACPA− patients. The citrulline-reactive monoclonal antibodies did not react with the unmodified arginine peptides, yet several reacted with more than one citrullinated antigen. A role for active antigen selection of the citrulline-reactive synovial B cells was supported by the strong bias toward amino acid replacement mutations in ACPA+ antibodies and by their loss of reactivity to citrullinated autoantigens when somatic mutations were reverted to the corresponding germline sequences

    Analysis of Memory B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Infected Individuals

    Get PDF
    BACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design

    Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine

    Get PDF
    The target of neutralizing antibodies that protect against influenza virus infection is the viral protein HA. Genetic and antigenic variation in HA has been used to classify influenza viruses into subtypes (H1–H16). The neutralizing antibody response to influenza virus is thought to be specific for a few antigenically related isolates within a given subtype. However, while heterosubtypic antibodies capable of neutralizing multiple influenza virus subtypes have been recently isolated from phage display libraries, it is not known whether such antibodies are produced in the course of an immune response to influenza virus infection or vaccine. Here we report that, following vaccination with seasonal influenza vaccine containing H1 and H3 influenza virus subtypes, some individuals produce antibodies that cross-react with H5 HA. By immortalizing IgG-expressing B cells from 4 individuals, we isolated 20 heterosubtypic mAbs that bound and neutralized viruses belonging to several HA subtypes (H1, H2, H5, H6, and H9), including the pandemic A/California/07/09 H1N1 isolate. The mAbs used different VH genes and carried a high frequency of somatic mutations. With the exception of a mAb that bound to the HA globular head, all heterosubtypic mAbs bound to acid- sensitive epitopes in the HA stem region. Four mAbs were evaluated in vivo and protected mice from challenge with influenza viruses representative of different subtypes. These findings reveal that seasonal influenza vaccination can induce polyclonal heterosubtypic neutralizing antibodies that cross-react with the swine-origin pandemic H1N1 influenza virus and with the highly pathogenic H5N1 virus

    Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study

    Get PDF
    BACKGROUND Atrial remodeling as a result of long-standing persistent atrial fibrillation (AF) induces substrate modifications that lead to different perpetuation mechanisms than in paroxysmal AF and a reduction in the efficacy of antiarrhythmic treatments. OBJECTIVE The purpose of this study was to identify the ionic current modifications that could destabilize reentries during chronic AF and serve to personalize antiarrhythmic strategies. METHODS A population of 173 mathematical models of remodeled human atrial tissue with realistic intersubject variability was developed based on action potential recordings of 149 patients diagnosed with AF. The relationship of each ionic current with AF maintenance and the dynamics of functional reentries (rotor meandering, dominant frequency) were evaluated by means of 3-dimensional simulations. RESULTS Self-sustained reentries were maintained in 126 (73%) of the simulations. AF perpetuation was associated with higher expressions of I-Na and I-caL (P < .01), with no significant differences in the remaining currents. I-caL blockade promoted AF extinction in 30% of these 126 models. The mechanism of AF termination was related with collisions between rotors because of an increase in rotor meandering (1.71 +/- 2.01cm(2)) and presented an increased efficacy in models with a depressed INa (P < .01). CONCLUSION Mathematical simulations based on a population of models representing intersubject variability allow the identification of ionic mechanisms underlying rotor dynamics and the definition of new personalized pharmacologic strategies. Our results suggest that the underlying mechanism of the diverging success of I-caL block as an antiarrhythmic strategy is dependent on the basal availability of sodium and calcium ion channel conductivities.Supported by the Spanish Ministry of Education (FPU2010); the Wellcome Trust Fellowship 100246/Z/12/Z; Universitat Politecnica de Valencia; the Spanish Health Research Fund (PI13/00903); the Spanish Society of Cardiology; the Spanish Ministry of Science; Generalitat Valenciana Grants (ACIF/2013/021); and Innovation (Red RIC, PLE2009-0152). Drs. Rodriguez and Climent are equally contributing senior authors.Liberos Mascarell, A.; Bueno-Orovio, A.; Rodrigo Bort, M.; Ravens, U.; Hernández-Romero, I.; Fernández-Avilés, F.; Guillem Sánchez, MS.... (2016). Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study. Heart Rhythm. 13(12):2358-2365. https://doi.org/10.1016/j.hrthm.2016.08.028S23582365131

    Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals

    Get PDF
    Background The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. Methods and Findings We immortalized IgG+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. Conclusions This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Dietary diversity and nutritional adequacy among an older Spanish population with Metabolic Syndrome in the PREDIMED-Plus study: a cross-sectional analysis

    Get PDF
    Dietary guidelines emphasize the importance of a varied diet to provide an adequate nutrient intake. However, an older age is often associated with consumption of monotonous diets that can be nutritionally inadequate, increasing the risk for the development or progression of diet-related chronic diseases, such as metabolic syndrome (MetS). To assess the association between dietary diversity (DD) and nutrient intake adequacy and to identify demographic variables associated with DD, we cross-sectionally analyzed baseline data from the PREDIMED-Plus trial: 6587 Spanish adults aged 55–75 years, with overweight/obesity who also had MetS. An energy-adjusted dietary diversity score (DDS) was calculated using a 143-item validated semi-quantitative food frequency questionnaire (FFQ). Nutrient inadequacy was defined as an intake below 2/3 of the dietary reference intake (DRI) forat least four of 17 nutrients proposed by the Institute of Medicine (IOM). Logistic regression models were used to evaluate the association between DDS and the risk of nutritionally inadequate intakes. In the higher DDS quartile there were more women and less current smokers. Compared with subjects in the highest DDS quartile, those in the lowest DDS quartile had a higher risk of inadequate nutrient intake: odds ratio (OR) = 28.56 (95% confidence interval (CI) 20.80–39.21). When we estimated food varietyfor each of the food groups, participants in the lowest quartile had a higher risk of inadequate nutrient intake for the groups of vegetables, OR = 14.03 (95% CI 10.55–18.65), fruits OR = 11.62 (95% CI 6.81–19.81), dairy products OR = 6.54 (95% CI 4.64–9.22) and protein foods OR = 6.60 (95% CI 1.96–22.24). As DDS decreased, the risk of inadequate nutrients intake rose. Given the impact of nutrient intake adequacy on the prevention of non-communicable diseases, health policies should focus on the promotion of a healthy varied diet, specifically promoting the intake of vegetables and fruit among population groups with lower DDS such as men, smokers or widow(er)s. View Full-Tex
    corecore