1,257 research outputs found

    Ecological inference using data from accelerometers needs careful protocols

    Get PDF
    Accelerometers in animal-attached tags are powerful tools in behavioural ecology, they can be used to determine behaviour and provide proxies for movement-based energy expenditure. Researchers are collecting and archiving data across systems, seasons and device types. However, using data repositories to draw ecological inference requires a good understanding of the error introduced according to sensor type and position on the study animal and protocols for error assessment and minimization.Using laboratory trials, we examine the absolute accuracy of tri-axial accelerometers and determine how inaccuracies impact measurements of dynamic body acceleration (DBA), a proxy for energy expenditure, in human participants. We then examine how tag type and placement affect the acceleration signal in birds, using pigeons Columba livia flying in a wind tunnel, with tags mounted simultaneously in two positions, and back- and tail-mounted tags deployed on wild kittiwakes Rissa tridactyla. Finally, we present a case study where two generations of tag were deployed using different attachment procedures on red-tailed tropicbirds Phaethon rubricauda foraging in different seasons.Bench tests showed that individual acceleration axes required a two-level correction to eliminate measurement error. This resulted in DBA differences of up to 5% between calibrated and uncalibrated tags for humans walking at a range of speeds. Device position was associated with greater variation in DBA, with upper- and lower back-mounted tags varying by 9% in pigeons, and tail- and back-mounted tags varying by 13% in kittiwakes. The tropicbird study highlighted the difficulties of attributing changes in signal amplitude to a single factor when confounding influences tend to covary, as DBA varied by 25% between seasons.Accelerometer accuracy, tag placement and attachment critically affect the signal amplitude and thereby the ability of the system to detect biologically meaningful phenomena. We propose a simple method to calibrate accelerometers that can be executed under field conditions. This should be used prior to deployments and archived with resulting data. We also suggest a way that researchers can assess accuracy in previously collected data, and caution that variable tag placement and attachment can increase sensor noise and even generate trends that have no biological meaning

    A global systematic review of frugivorous animal tracking studies and the estimation of seed dispersal distances

    Get PDF
    Seed dispersal is one of the most important ecosystem functions globally. It shapes plant populations, enhances forest succession, and has multiple, indirect benefits for humans, yet it is one of the most threatened processes in plant regeneration, worldwide. Seed dispersal distances are determined by the diets, seed retention times and movements of frugivorous animals. Hence, understanding how we can most effectively describe frugivore movement and behaviour with rapidly developing animal tracking technology is key to quantifying seed dispersal. To assess the current use of animal tracking in frugivory studies and to provide a baseline for future studies, we provide a comprehensive review and synthesis on the existing primary literature of global tracking studies that monitor movement of frugivorous animals. Specifically, we identify studies that estimate dispersal distances and how they vary with body mass and environmental traits. We show that over the last two decades there has been a large increase in frugivore tracking studies that determine seed dispersal distances. However, some taxa (e.g. reptiles) and geographic locations (e.g. Africa and Central Asia) are poorly studied. Furthermore, we found that certain morphological and environmental traits can be used to predict seed dispersal distances. We demonstrate that flight ability and increased body mass both significantly increase estimated seed dispersal mean and maximum distances. Our results also suggest that protected areas have a positive effect on mean seed dispersal distances when compared to unprotected areas. We anticipate that this review will act as a reference for future frugivore tracking studies, specifically to target current taxonomic and geographic data gaps, and to further explore how seed dispersal relates to key frugivore and fruit traits

    A global systematic review of frugivorous animal tracking studies and the estimation of seed dispersal distances

    Get PDF
    Seed dispersal is one of the most important ecosystem functions globally. It shapes plant populations, enhances forest succession, and has multiple, indirect benefits for humans, yet it is one of the most threatened processes in plant regeneration, worldwide. Seed dispersal distances are determined by the diets, seed retention times and movements of frugivorous animals. Hence, understanding how we can most effectively describe frugivore movement and behaviour with rapidly developing animal tracking technology is key to quantifying seed dispersal. To assess the current use of animal tracking in frugivory studies and to provide a baseline for future studies, we provide a comprehensive review and synthesis on the existing primary literature of global tracking studies that monitor movement of frugivorous animals. Specifically, we identify studies that estimate dispersal distances and how they vary with body mass and environmental traits. We show that over the last two decades there has been a large increase in frugivore tracking studies that determine seed dispersal distances. However, some taxa (e.g. reptiles) and geographic locations (e.g. Africa and Central Asia) are poorly studied. Furthermore, we found that certain morphological and environmental traits can be used to predict seed dispersal distances. We demonstrate that flight ability and increased body mass both significantly increase estimated seed dispersal mean and maximum distances. Our results also suggest that protected areas have a positive effect on mean seed dispersal distances when compared to unprotected areas. We anticipate that this review will act as a reference for future frugivore tracking studies, specifically to target current taxonomic and geographic data gaps, and to further explore how seed dispersal relates to key frugivore and fruit traits

    The role of reservoir species in mediating plague's dynamic response to climate

    Get PDF
    The distribution and transmission of Yersinia pestis, the bacterial agent of plague, responds dynamically to climate, both within wildlife reservoirs and human populations. The exact mechanisms mediating plague's response to climate are still poorly understood, particularly across large environmentally heterogeneous regions encompassing several reservoir species. A heterogeneous response to precipitation was observed in plague intensity across northern and southern China during the Third Pandemic. This has been attributed to the response of reservoir species in each region. We use environmental niche modelling and hindcasting methods to test the response of a broad range of reservoir species to precipitation. We find little support for the hypothesis that the response of reservoir species to precipitation mediated the impact of precipitation on plague intensity. We instead observed that precipitation variables were of limited importance in defining species niches and rarely showed the expected response to precipitation across northern and southern China. These findings do not suggest that precipitation–reservoir species dynamics never influence plague intensity but that instead, the response of reservoir species to precipitation across a single biome cannot be assumed and that limited numbers of reservoir species may have a disproportional impact upon plague intensity

    Thermal sensitivity of feeding and burrowing activity of an invasive crayfish in UK waters

    Get PDF
    Climate change and invasive species are among the biggest threats to global biodiversity and ecosystem function. Although the individual impacts of climate change and invasive species are commonly assessed, we know far less about how a changing climate may impact invading species. Increases in water temperature due to climate change are likely to alter the thermal regime of UK rivers, and this in turn may influence the performance of invasive species such as signal crayfish (Pacifastacus leniusculus), which are known to have deleterious impacts on native ecosystems. We evaluate the relationship between water temperature and two key performance traits in signal crayfish—feeding and burrowing rate—using thermal experiments on wild‐caught individuals in a laboratory environment. Although water temperature was found to have no significant influence on burrowing rate, it did have a strong effect on feeding rate. Using the thermal performance curve for feeding rate, we evaluate how the thermal suitability of three UK rivers for signal crayfish may change as a result of future warming. We find that warming rivers may increase the amount of time that signal crayfish can achieve high feeding rate levels. These results suggest that elevated river water temperatures as a result of climate change may promote higher signal crayfish performance in the future, further exacerbating the ecological impact of this invasive species

    Computing the shortest elementary flux modes in genome-scale metabolic networks

    Get PDF
    This article is available open access through the publisher’s website through the link below. Copyright @ The Author 2009.Motivation: Elementary flux modes (EFMs) represent a key concept to analyze metabolic networks from a pathway-oriented perspective. In spite of considerable work in this field, the computation of the full set of elementary flux modes in large-scale metabolic networks still constitutes a challenging issue due to its underlying combinatorial complexity. Results: In this article, we illustrate that the full set of EFMs can be enumerated in increasing order of number of reactions via integer linear programming. In this light, we present a novel procedure to efficiently determine the K-shortest EFMs in large-scale metabolic networks. Our method was applied to find the K-shortest EFMs that produce lysine in the genome-scale metabolic networks of Escherichia coli and Corynebacterium glutamicum. A detailed analysis of the biological significance of the K-shortest EFMs was conducted, finding that glucose catabolism, ammonium assimilation, lysine anabolism and cofactor balancing were correctly predicted. The work presented here represents an important step forward in the analysis and computation of EFMs for large-scale metabolic networks, where traditional methods fail for networks of even moderate size. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online (http://bioinformatics.oxfordjournals.org/cgi/content/full/btp564/DC1).Fundação Calouste Gulbenkian, Fundação para a CiĂȘncia e a Tecnologia (FCT) and Siemens SA Portugal

    Biotic factors limit the invasion of the plague pathogen ( <i>Yersinia pestis</i> ) in novel geographical settings

    Get PDF
    Aim: The distribution of Yersinia pestis, the pathogen that causes plague in humans, is reliant upon transmission between host species; however, the degree to which host species distributions dictate the distribution of Y. pestis, compared with limitations imposed by the environmental niche of Y. pestis per se, is debated. We test whether the present-day environmental niche of Y. pestis differs between its native range and an invaded range and whether biotic factors (host distributions) can explain observed discrepancies. Location: North America and Central Asia. Major taxa studied: Yersinia pestis. Methods: We use environmental niche models to determine whether the current climatic niche of Y. pestis differs between its native range in Asia and its invaded range in North America. We then test whether the inclusion of information on the distribution of host species improves the ability of models to capture the North American niche. We use geographical null models to guard against spurious correlations arising from spatially autocorrelated occurrence points. Results: The current climatic niche of Y. pestis differs between its native and invaded regions. The Asian niche overpredicted the distribution of Y. pestis across North America. Including biotic factors along with the native climatic niche increased niche overlap between the native and invaded models, and models containing only biotic factors performed better than the native climatic niche alone. Geographical null models confirmed that the increased niche overlap through inclusion of biotic factors did not, with a couple of exceptions, arise solely from spatially autocorrelated occurrences. Main conclusions: The current climatic niche in Central Asia differs from the current climatic niche in North America. Inclusion of biotic factors improved the fit of models to the Y. pestis distribution data in its invaded region better than climate variables alone. This highlights the importance of host species when investigating zoonotic disease introductions and suggests that climatic variables alone are insufficient to predict disease distribution in novel environments

    Fauxcurrence: simulating multi-species occurrences for null models in species distribution modelling and biogeography

    Get PDF
    The work was funded by Newton Fund (UK)/NERC (UK)/RISTEKDIKTI (Indonesia) grants awarded to JT, BJ, ACA, ASTP, CG-R, GB and LTL (grant no.: NE/S006923/1, NE/S006893/1, 2488/IT3.L1/PN/2020 and 3982/IT3.L1/PN/2020). GB and CG-R are funded by Royal Society Univ. Research Fellowships (UF160614 and UF150571 respectively).Peer reviewedPublisher PD
    • 

    corecore