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Defining appropriate null expectations for species distribution hypotheses is impor-
tant because sampling bias and spatial autocorrelation can produce realistic, but eco-
logically meaningless, geographic patterns. Generating null species occurrences with 
similar spatial structure to observed data can help overcome these problems, but exist-
ing methods focus on single or pairs of species and do not incorporate between-spe-
cies spatial structure that may occlude comparative biogeographic analyses. Here, we 
describe an algorithm for generating randomised species occurrence points that mimic 
the within- and between-species spatial structure of real datasets and implement it in a 
new R package – fauxcurrence. The algorithm can be implemented on any geographic 
domain for any number of species, limited only by computing power. To demonstrate 
its utility, we apply the algorithm to two common analysis-types: testing the fit of 
species distribution models (SDMs) and evaluating niche-overlap. The method works 
well on all tested datasets within reasonable timescales. We found that many SDMs, 
despite a good fit to the data, were not significantly better than null expectations and 
identified only two cases (out of a possible 32) of significantly higher niche diver-
gence than expected by chance. The package is user-friendly, flexible and has many 
potential applications beyond those tested here, such as joint SDM evaluation and 
species co-occurrence analysis, spanning the areas of ecology, evolutionary biology and 
biogeography.

Keywords: environmental niche model, joint species distribution modelling, niche 
conservatism, niche divergence, niche overlap, null biogeographical model
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Introduction

Eco-geographical hypothesis testing using species occur-
rence data can be hampered by spatial autocorrelation and 
the difficulty of defining appropriate null expectations 
(Bahn and Mcgill 2007, Beale et al. 2008, Chapman 2010, 
Fourcade et al. 2018, Moore et al. 2018). A major issue is 
that spatial clustering of conspecific, or separation of hetero-
specific, occurrence records can be affected by multiple fac-
tors, which are often difficult to disentangle. These include: 
1) habitat suitability (Phillips et al. 2006), 2) dispersal limita-
tion (Glor and Warren 2010), 3) interactions between indi-
viduals of the same or different species such as conspecific 
attraction, competitive exclusion or mutualism (Mielke et al. 
2020) or 4) sampling bias, where occurrence records are more 
likely to be collected from more easily accessible or inten-
sively studied areas (Phillips et al. 2009).

One approach to overcome these issues has been to use 
null species occurrences to define the expectations if species 
distributions were entirely random, or if only the inherent 
spatial structure within species has shaped them (Raes and ter 
Steege 2007, Beale et al. 2008, Algar et al. 2013, Bohl et al. 
2019). In general, these approaches use randomised spe-
cies distributions generated without reference to variables of 
interest which are compared to a real species distribution. If 
the real species distribution shows a closer association with 
the focal variable than the null models, then this is taken as 
evidence that they are linked. This approach was pioneered 
for species distribution modelling by Raes and ter Steege 
(2007), who used randomly chosen points across the study 
area to produce null occurrence datasets. More recent studies 
(Beale et al. 2008, Algar et al. 2013) have used null models 
to account for the effect of inherent spatial structure within 
species. To define the null expectation, these approaches use 
an iterative procedure to produce null species distributions 
with similar spatial structure to observed occurrences, exclud-
ing any consideration of environment or specific geographic 
location. While these methods are well-suited to testing 
habitat-suitability hypotheses for single species, they do not 
take spatial structure between species into account, making 
them unsuitable for testing multispecies hypotheses involv-
ing, for example, niche overlap or range boundaries. Some 
methods designed to test niche overlap hypotheses employ 
null models for pairs of species, but these either do not take 
spatial structure into account (Warren et al. 2008), or simply 
translocate the entire set of occurrence points. This preserves 
spatial structure but limits their application to species which 
are range-restricted relative to the study region (Nunes and 
Pearson 2017).

Here, we present a method to fill this gap, which is imple-
mented in a new R package – fauxcurrence ver. 1 (available at 
<https://github.com/ogosborne/fauxcurrence>). The pack-
age can produce null species occurrences which preserve the 
spatial structure within and between an arbitrary number 
of species, and provides many options to tailor these occur-
rences to the user’s needs. We demonstrate the utility of the 
package using a dataset of 22 species of plants, vertebrates 

and arthropods. We use the resulting null occurrence points 
to test the significance of species distribution models (SDMs) 
and to test for significant deviations from null expectations of 
niche overlap between species.

Material and methods

Method description

Our method (Fig. 1a) has three main modes of operation, 
distinguished by how inter-point distances are used to define 
spatial structure. Within-species distances (divided into 
one subset per species) are always included and can also be 
used alone (which we refer to here as the ‘Intra’ null model; 
Fig. 1b). The total set of between-species distances can be 
divided into subsets in two ways: either as sets of general 
between-species distances per species (i.e. the distances from 
a species’ occurrence points to all heterospecific occurrence 
points; the ‘Inter’ null model; Fig. 1b) or as a separate set 
of distances between each pair of species in the dataset (the 
‘Inter-sep’ model; Fig. 1b; Supporting information).

The user provides a set of species occurrence points and a 
raster defining the study area. The algorithm begins by ran-
domly generating one simulated occurrence point per species. 
It then adds occurrence points for each species by drawing 
each new point D distance away from a random existing con-
specific point (where D is sampled from the empirical distri-
bution function of observed within-species distances) until 
each species has the same number of occurrences as in the 
observed dataset (Supporting information).

Once the initial set of simulated points are generated, the 
fit of their spatial structure to that of the observed points is 
iteratively improved. For each iteration, one point is replaced 
and the match between null and observed interpoint distances 
is evaluated using discrete Kullback–Leibler (KL) divergence 
(Kullback and Leibler 1951), where smaller values indicate 
a better match between the simulated and observed points. 
Since there are multiple interpoint distance distributions (i.e. 
within- and between-species distances for multiple species or 
pairs of species), a weighted mean of KL-divergence across all 
distributions is used, weighted such that within- and between-
species distances contribute equally. The point replacement is 
only retained if it improves the match, and this procedure is 
repeated until either no improvement in KL divergence has 
been made for a set number of iterations or a maximum itera-
tion limit has reached (Fig. 1c–e; see Supporting information 
for full details). The package includes full documentation 
and a vignette – ‘Using-Fauxcurrence’ – with runnable code 
examples of several use-cases (reproduced in the Supporting 
information).

Test data

We tested the method on seven species occurrence datasets 
from Sulawesi, Indonesia each containing between one and 
six species from a single genus (Supporting information). 
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We ran the Intra model on all datasets, and the Inter model 
on all datasets with over one species. Since the Inter and 
Inter-sep models are identical for species pairs, we only ran 
the Inter-sep model for datasets with over two species. The 
iterative improvement was continued until there had been no 
improvement for 10 000 iterations. For each dataset/model 
combination, we produced 1000 independent, null occur-
rence replicates, each with similar spatial structure, but differ-
ing in the final locations selected by the algorithm.

Comparison to a random null model

To illustrate the effect of including spatial structure in our null 
models, we also implemented a random null model which 
ignores spatial structure. Following the approach taken by 
Raes and ter Steege (2007), we randomly selected raster cells 
from the study region to produce the appropriate number of 
occurrences for each species. This procedure was repeated to 
produce 1000 random null datasets for each species.

Figure 1. Overview of the method. A flowchart (a) shows the basic functioning of the algorithm: initial null points are generated based on 
observed inter-point distances, these are then iteratively improved. The algorithm finishes when the number of iterations with no improve-
ment (n.flat) reaches a user-defined limit. There are three classes of inter-point distance sets in the algorithm (b), within-species (used in all 
models), general between-species (used in the Inter model) and pairwise between-species (used in the Inter-sep model). The circles to the 
right of each indicate which null models they are used in. Panels (c–e) show an example run of the Inter model. Kullback–Leibler divergence 
decreases across iterations (c) and this improvement can be clearly seen when comparing the initial and final null occurrence points (d; map 
panels). The left of each split violin plot (e) shows the density of observed interpoint distances for each of the distance sets in the model and 
the right shows those of the null, which are more similar to the observed distances in the final null (bottom) than the initial null (top).
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SDM model-fitting and niche overlap

We used Maxent ver. 3.4.1 (Phillips et al. 2006) to build 
species distribution models (SDMs) for all species using 
the 19 BIOCLIM climate variables and altitude from the 
WorldClim1 database (Hijmans et al. 2005). To determine 
if SDMs generated from the observed data performed sig-
nificantly better than those generated from the null models, 
we calculated area under the receiver operating character-
istic curve (AUC; a measure of model discrimination) and 
minimum training presence omission rate (ORMTP; a mea-
sure of model overfitting), for SDMs built from observed 
data, the fauxcurrence-generated null model replicates, and 
the randomly-generated null model replicates. These statis-
tics were then compared between observed and null SDMs, 
and p-values were calculated to determine significance. For 
datasets with more than one species, we compared null and 
observed niche overlap using Schoener’s D (Schoener 1968) 
and Warren’s I (Warren et al. 2008), between all pairs of con-
generic species (see Supporting information for full details).

Results

Method performance

Average time per iteration ranged from 3.2 milliseconds (ms) 
to 21.5 ms and the mean number of iterations ranged from 
48 155 to 341 610 (Supporting information). Number of 
occurrences was the best predictor of number of iterations 
to model completion, although number of species also had 
an effect (Supporting information). Plotting KL divergence 
across iterations suggested that 10 000 iterations without 
improvement was more than sufficient to minimise the KL 
divergence statistic for most datasets (Supporting informa-
tion). As a result of the smaller number of distance distribu-
tions to be minimised for the Intra model, it was substantially 
faster per iteration, and required far fewer iterations to reach 
minimisation, than either the Inter or Inter-sep models 
(Supporting information).

Application to SDM model-fitting and niche overlap

The AUC values were over 0.8 for 13 of 22 species and over 
0.9 for four species, although only six of these were signifi-
cantly greater than null expectations according to at least one 
of our fauxcurrence-generated null model types (Fig. 2a–c; 
Supporting information), and where they were significantly 
greater than those of one null model type, they were often 
not significantly different to those of the others (Fig. 2a–d). 
In fact, SDMs for only two species, Cyrtandra geocarpa and 
Sphenomorphus tropidonotus, had a significantly better AUC 
than all applied fauxcurrence-generated null models (Fig. 2d). 
For the random null model (Raes and ter Steege 2007), AUC 
values were clustered around 0.5 and approximately nor-
mally distributed for all species (Supporting information), 
leading to all but two of the species’ observed AUC values 

being significantly higher than the random null (Supporting 
information). Only five species had ORMTP significantly 
smaller than null expectations according to at least one of our 
fauxcurrence-generated null model types (Supporting infor-
mation) and only three, Cyrtandra geocarpa, Sphenomorphus 
tropidonotus and Limnonectes microtympanum, had signifi-
cantly smaller ORMTP than all applied fauxcurrence-generated 
null models (Supporting information). ORMTP values for the 
random null model were more similar to fauxcurrence-gener-
ated null values than AUC values were (Supporting informa-
tion), leading to 10 species’ ORMTP values being significantly 
lower than the random null, including all species with a 
significant ORMTP according to the fauxcurrence-generated  
null models.

Observed niche divergence differed from null expectations 
in only two species pairs, both of which showed significant 
niche divergence (Supporting information). Both of these 
involved Cyrtandra geocarpa, which was also one of only two 
species whose SDM fit significantly better than those from 
all the null models in terms of both AUC and ORMTP (Fig. 2; 
Supporting information). Both Inter and Inter-sep null mod-
els, and both niche overlap statistics found the same two spe-
cies pairs to be significant (Supporting information).

Discussion

Here, we describe a new tool to help overcome the difficul-
ties of defining null expectations when working with multi-
species occurrence data. Our case study demonstrates the 
utility of the method. While 13 species had AUC values 
typically interpreted as ‘excellent’ or ‘outstanding’ discrimi-
nation (Hosmer et al. 2013), less than half of these were sig-
nificantly higher than one of our null models. Encouragingly, 
the two species with significantly higher AUC than expected 
according to all null models also had significantly lower 
ORMTP than expected according to all null models. While 
both AUC and ORMTP values were highly correlated with 
their p-values, many species with very high AUC scores did 
not have a significantly better fit than the null models. The 
lowest AUC score which was significantly higher than any 
of the null models was 0.76, underlining that SDMs with 
low AUC scores (e.g. < 0.75) should be treated with great 
caution. Using our method to demonstrate that SDMs fit 
significantly better than null expectations in terms of both 
high discrimination and low over-fitting, will provide much 
greater certainty than simple inspection of AUC and OR.

Comparison between the fauxcurrence models and the 
random null model (Raes and ter Steege 2007) illustrated the 
importance of considering spatial structure when conducting 
null-model analysis. Random null distributions of AUC were 
very similar between species, with means of approximately 
0.5 (signifying no discrimination) in all cases (Supporting 
information). This may be expected for a null model which 
consists of randomly chosen occurrences, and means that any 
observed AUC value substantially higher than 0.5 is likely to 
be significant according to this model. The contrasting results 
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of the fauxcurrence-generated null models underlines the fact 
that spatial autocorrelation of both occurrences and environ-
mental variables can result in SDMs with high discrimina-
tion even where no association between species occurrence 
and environment exists.

The Intra model algorithm is largely equivalent to the 
approach of Beale et al. (2008) differing only in the method 
used to measure similarity of spatial structure between null 
and observed data. Comparison between the Intra model and 
the Inter and Inter-sep models showed that the main novel 

Figure 2. The relationship between area under the receiver operating characteristic curve (AUC) of the species distribution models (SDMs) 
for observed occurrences, and the p-values for comparison to AUC of each null model type (a–c). Dotted lines mark 0.05 on the p-value 
axis, the solid line is a linear regression line and Pearson’s correlation is shown in the top-right of each plot. A Venn diagram (d) shows the 
overlap in significance (p < 0.05) between the three models. Each labelled circle contains species with significantly higher observed AUC 
than those of simulated data of each null model type and those which were significantly higher than simulated data from multiple null 
models are shown in the appropriate intersection (those outside the circles were not significant: ‘n.s’). Where all implemented models agree, 
symbols are in bold. Species symbols are shown in the legend (e).
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feature of our approach – the inclusion of between-species 
spatial structure – can alter null expectations for SDMs. For 
example, Draco spilonotus had a significantly better fit than 
the Intra null model (p = 0.001), but was not significantly 
different from either the Inter or Inter-sep models (p = 0.18 
and p = 0.27, respectively; Supporting information). While 
this is not evidence of it per se, such a pattern could plausibly 
have a biological basis. For example, if competitive exclusion 
between species, rather than climate suitability, was respon-
sible for the geographical separation of species into ranges 
that happen to have distinct climates (Godsoe et al. 2017), 
such a pattern might be expected.

We also demonstrated the applicability of our method to 
identify significant niche divergence (or niche conservatism). 
Our method has advantages over existing approaches. The 
approach of Nunes and Pearson (2017) creates null replicates 
by translocating and rotating observed species occurrences. 
This would clearly be inappropriate for a study region such as 
Sulawesi, since most rotations and translocations would result 
in a large proportion of occurrences being translocated to the 
sea, leading to a high number of similar replicates, as noted by 
the authors (Nunes and Pearson 2017). The contorted geog-
raphy of Sulawesi is not unique, and many intensely studied 
locations such as Isabela Island in the Galápagos archipelago 
and Lord Howe Island, Australia, also fall into this category.

While we expect fauxcurrence to work on a wider range 
of datasets due to our use of ‘as similar as possible’ rather 
than identical spatial structure and the capability to include 
overland distances, it could have similar issues in extreme 
cases. In such cases, where there are a very small number of 
possible null model configurations which fit the observed 
spatial structure, the high proportion of similar null models 
would likely lead to underestimation of model significance. 
Since there are more spatial constraints on models including 
between-species spatial structure, this is more likely to be the 
case for the Inter and Inter-sep models, as can be seen by their 
less efficient minimisation of KL divergence (Supporting 
information). Thus we recommend carefully inspecting null 
occurrence distributions, particularly in cases where species 
are widely distributed relative to the study region, where 
summary statistics have little variance between null SDMs, 
or when the significance estimates from different null models 
differ.

Aside from the two applications shown here, there are 
many other potential uses for the package and possible refine-
ments to the way biogeographic models could be assessed 
using fauxcurrence. For example, for widely distributed spe-
cies, using a spatially-independent evaluation dataset to 
assess model performance will produce more robust results 
(Bohl et al. 2019). In the context of fauxcurrence, this would 
involve withholding some of the data as an evaluation data-
set, using only the remaining data to build null models and 
construct the SDM, and assessing both null and observed 
SDMs using the evaluation dataset. The performance of 
joint species distribution models (Pollock et al. 2014), which 
jointly model environmental and community effects on spe-
cies distributions, could be assessed with our approach in a 

similar way to our tests of SDM fit. While not tested here, 
sampling bias could be accounted for by masking the input 
raster to remove cells with no sampling records across a large 
multi-species database, an approach taken by Raes and ter 
Steege (2007). Our method could even be extended to apply 
to environmental space: while not implemented in the cur-
rent release, it could be modified to generate null occurrences 
based on proximity in environmental space by replacing the 
geographical distance matrix with an environmental distance 
matrix. Such an approach would maintain the environmental 
structure in the occurrences, allowing for tests of non-ran-
domness in geographical space. Other potential applications 
include identifying significant effects of biotic factors (other 
species) on a focal species’ distribution (Algar et al. 2013, 
Giannini et al. 2013) where the comparison of different 
null models can give insight into the relevance of pairwise 
and complex biotic interactions, and testing for significant 
co-occurrence of range-boundaries across clades (Swenson 
and Howard 2005). More generally, fauxcurrence-generated 
occurrences could be used in any theoretical biogeographical 
application where realistic occurrences of species and clades 
are required. Overall, the method is easy to use, flexible, and 
can add rigour and insight into investigations of a wide range 
of problems in ecology, evolution and biogeography.

To cite Fauxcurrence or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 1.0’:

Osborne, O. G. et al. 2022. Fauxcurrence: simulating multi-
species occurrences for null models in species distribu-
tion modelling and biogeography. – Ecography 2022: 1–7  
(ver. 1.0).
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