53 research outputs found

    Results from a real-life study

    Get PDF
    Immune check-point inhibitors (ICIs) have changed our view on how to treat cancer. Despite their approval in treatment of many different cancers, efficacy of immune check-point inhibitors (ICI) in neuroendocrine neoplasia is limited and poorly understood. Established treatment options of neuroendocrine tumors (NET) and neuroendocrine carcinomas (NECs) are based on surgery, tumor-targeted medical treatments, Peptide Receptor Radionuclide Therapy (PRRT), and locoregional therapies. However, in many patients these treatments lose efficacy over time, and novel therapies are urgently needed. We report on 8 patients diagnosed with neuroendocrine neoplasms (NEN) that were treated with ICI (pembrolizumab, avelumab, nivolumab plus ipilimumab) as salvage therapy. In this cohort, we observed tumor response with partial remission in 3 patients and stable disease in 1 patient. Four patients showed progressive disease. Of note, responses were observed both in PD-L1 positive and PD-L1 negative patients. Here, we discuss clinical courses of these patients in the context of available literature to highlight limitations and drawbacks currently preventing the use of ICI in routine management of patients with NEN

    A case report of an excellent response to interferon- α in a patient with functional metastasized neuroendocrine tumor refractory to other treatments

    Get PDF
    Introduction: Interferon alpha (IFNα) has been used for a long time in patients with functionally active neuroendocrine tumors (NET). However, due to the unfavorable toxicity profile of interferon, the perceived limited efficacy as well as the development of novel substances, IFNα is only used sparingly in the treatment of NET to date. Patients concerns and diagnosis: We describe the case of a 63-year-old male patient with highly differentiated, functional NET of the ileum and synchronous liver metastasis. Interventions: After failure of classical therapies including dose-intensified somatostatin analog treatment and palliative primary tumor resection, a therapy with pegylated IFNα2a (135 Όg/wk) was initiated. Following this treatment, the patient fully recovered from signs of hypersecretion and demonstrated an impressive tumor response. Outcomes: Thirty months after initiating IFNα, the patient is still free of clinical symptoms and shows a sustained tumor response. Notably, no relevant side effects were observed. Conclusion: Our case report supports the use of IFNα in patients with functional NET refractory to classical treatments

    A radiomics-based model to classify the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI

    Get PDF
    The implementation of radiomics in radiology is gaining interest due to its wide range of applications. To develop a radiomics-based model for classifying the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI, 248 patients with a known etiology of liver cirrhosis who underwent 306 gadoxetic acid-enhanced MRI examinations were included in the analysis. MRI examinations were classified into 6 groups according to the etiology of liver cirrhosis: alcoholic cirrhosis, viral hepatitis, cholestatic liver disease, nonalcoholic steatohepatitis (NASH), autoimmune hepatitis, and other. MRI examinations were randomized into training and testing subsets. Radiomics features were extracted from regions of interest segmented in the hepatobiliary phase images. The fivefold cross-validated models (2-dimensional-(2D) and 3-dimensional-(3D) based) differentiating cholestatic cirrhosis from noncholestatic etiologies had the best accuracy (87.5%, 85.6%), sensitivity (97.6%, 95.6%), predictive value (0.883, 0.877), and area under curve (AUC) (0.960, 0.910). The AUC was larger in the 2D-model for viral hepatitis, cholestatic cirrhosis, and NASH-associated cirrhosis (P-value of 0.05, 0.05, 0.87, respectively). In alcoholic cirrhosis, the AUC for the 3D model was larger (P=0.01). The overall intra-class correlation coefficient (ICC) estimates and their 95% confident intervals (CI) for all features combined was 0.68 (CI 0.56-0.87) for 2D and 0.71 (CI 0.61-0.93) for 3D measurements suggesting moderate reliability. Radiomics-based analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI may be a promising noninvasive method for identifying the etiology of liver cirrhosis with better performance of the 2D- compared with the 3D-generated models

    Artificial intelligence‐based analysis of body composition in Marfan: skeletal muscle density and psoas muscle index predict aortic enlargement

    Get PDF
    Background: Patients with Marfan syndrome are at risk for aortic enlargement and are routinely monitored by computed tomography (CT) imaging. The purpose of this study is to analyse body composition using artificial intelligence (AI)-based tissue segmentation in patients with Marfan syndrome in order to identify possible predictors of progressive aortic enlargement. Methods: In this study, the body composition of 25 patients aged <= 50 years with Marfan syndrome and no prior aortic repair was analysed at the third lumbar vertebra (L3) level from a retrospective dataset using an AI-based software tool (Visage Imaging). All patients underwent electrocardiography-triggered CT of the aorta twice within 2 years for suspected progression of aortic disease, suspected dissection, and/or pre-operative evaluation. Progression of aortic enlargement was defined as an increase in diameter at the aortic sinus or the ascending aorta of at least 2 mm. Patients meeting this definition were assigned to the 'progressive aortic enlargement' group (proAE group) and patients with stable diameters to the 'stable aortic enlargement' group (staAE group). Statistical analysis was performed using the Mann-Whitney U test. Two possible body composition predictors of aortic enlargement-skeletal muscle density (SMD) and psoas muscle index (PMI)-were analysed further using multivariant logistic regression analysis. Aortic enlargement was defined as the dependent variant, whereas PMI, SMD, age, sex, body mass index (BMI), beta blocker medication, and time interval between CT scans were defined as independent variants. Results: There were 13 patients in the proAE group and 12 patients in the staAE group. AI-based automated analysis of body composition at L3 revealed a significantly increased SMD measured in Hounsfield units (HUs) in patients with aortic enlargement (proAE group: 50.0 +/- 8.6 HU vs. staAE group: 39.0 +/- 15.0 HU; P = 0.03). PMI also trended towards higher values in the proAE group (proAE group: 6.8 +/- 2.3 vs. staAE group: 5.6 +/- 1.3; P = 0.19). Multivariate logistic regression revealed significant prediction of aortic enlargement for SMD (P = 0.05) and PMI (P = 0.04). Conclusions: Artificial intelligence-based analysis of body composition at L3 in Marfan patients is feasible and easily available from CT angiography. Analysis of body composition at L3 revealed significantly higher SMD in patients with progressive aortic enlargement. PMI and SMD significantly predicted aortic enlargement in these patients. Using body composition as a predictor of progressive aortic enlargement may contribute information for risk stratification regarding follow-up intervals and the need for aortic repair

    Postoperative single-sequence (PoSSe) MRI: imaging work-up for CT-guided or endoscopic drainage indication of collections after hepatopancreaticobiliary surgery

    Get PDF
    Purpose: Fluid collections due to anastomotic leakage are a common complication after hepatopancreaticobiliary (HPB) surgery and are usually treated with drainage. We conducted a study to evaluate imaging work-up with a postoperative single-sequence (PoSSe) MRI for the detection of collections and indication of drainage. Material and methods: Forty-six patients who developed signs of leakage (fever, pain, laboratory findings) after HPB surgery were prospectively enrolled. Each patient was examined by abdominal sonography and our PoSSe MRI protocol (axial T2-weighted HASTE only). PoSSe MRI examination time (from entering to leaving the MR scanner room) was measured. Sonography and MRI were evaluated regarding the detection and localization of fluid collections. Each examination was classified for diagnostic sufficiency and an imaging-based recommendation if CT-guided or endoscopic drainage is reasonable or not was proposed. Imaging work-up was evaluated in terms of feasibility and the possibility of drainage indication. Results: Sonography, as first-line modality, detected 21 focal fluid collections and allowed to decide about the need for drainage in 41% of patients. The average time in the scanning room for PoSSe MRI was 9:23 min [7:50-13:32 min]. PoSSe MRI detected 46 focal collections and allowed therapeutic decisions in all patients. Drainage was suggested based on PoSSe MRI in 25 patients (54%) and subsequently indicated and performed in 21 patients (100% sensitivity and 84% specificity). No patient needed further imaging to optimize the treatment. Conclusions: The PoSSe MRI approach is feasible in the early and intermediate postoperative setting after HPB surgery and shows a higher detection rate than sonography. Imaging work-up regarding drainage of collections was successful in all patients and our proposed PoSSe MRI algorithm provides an alternative to the standard work-up

    Peritoneal Carcinomatosis in Gastro-Entero-Pancreatic Neuroendocrine Neoplasms: Clinical Impact and Effectiveness of the Available Therapeutic Options

    Get PDF
    Abstract Background: Peritoneal carcinomatosis (PC) can affect the quality of life of patients with gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs). Peritoneal disease control by medical therapies in these patients has been poorly investigated Objectives: To describe, in a consecutive series of GEP-NENs, the clinical impact of PC and to report the effectiveness of available treatments in PC control. Methods: A retrospective, monocenter analysis was performed of 135 GEP-NENs (1993–2016) with at least a 12-month follow-up. Peritoneal disease progression was defined as detection of a significant increase in size or appearance of new implants by imaging. Results: A total of 62.9% of cases had diffuse PC (involving at least 2 abdominal quadrants). According to WHO 2017 classification, cases were 42.3% neuroendocrine tumors NET-G1, 45.5% NET-G2, 6.5% NET-G3, 4.9% neuroendocrine carcinomas NEC-G3, and 0.8% mixed neuroendocrine-nonneuroendocrine neoplasms. Bowel obstruction occurred in 30 (22.2%) patients mainly depending on size of peritoneal implants (HR: 1.10; 95% CI: 1.02–1.20; p = 0.01). Patients with diffuse PC treated with peptide receptor radionuclide therapy (PRRT) showed peritoneal progression in 37.5% of cases, and bowel obstruction or ascites in 28.1%. Better peritoneal disease control was observed in cases receiving somatostatin analogs at first-line therapy, probably due to a less aggressive disease behavior for these patients. Conclusions: Bowel obstruction is not uncommon in GEPNENs with PC. PRRT should be adopted with caution in GEPNENs with diffuse PC, but larger series are needed to confirm these data

    Hepatocellular adenomas: is there additional value in using Gd-EOB-enhanced MRI for subtype differentiation?

    Get PDF
    Purpose: To differentiate subtypes of hepatocellular adenoma (HCA) based on enhancement characteristics in gadoxetic acid (Gd-EOB) magnetic resonance imaging (MRI). Materials and methods: Forty-eight patients with 79 histopathologically proven HCAs who underwent Gd-EOB-enhanced MRI were enrolled (standard of reference: surgical resection). Two blinded radiologists performed quantitative measurements (lesion-to-liver enhancement) and evaluated qualitative imaging features. Inter-reader variability was tested. Advanced texture analysis was used to evaluate lesion heterogeneity three-dimensionally. Results: Overall, there were 19 (24%) hepatocyte nuclear factor (HNF)-1a-mutated (HHCAs), 37 (47%) inflammatory (IHCAs), 5 (6.5%) b-catenin-activated (bHCA), and 18 (22.5%) unclassified (UHCAs) adenomas. In the hepatobiliary phase (HBP), 49.5% (39/79) of all adenomas were rated as hypointense and 50.5% (40/79) as significantly enhancing (defined as > 25% intralesional GD-EOB uptake). 82.5% (33/40) of significantly enhancing adenomas were IHCAs, while only 4% (1/40) were in the HHCA subgroup (p < 0.001). When Gd-EOB uptake behavior was considered in conjunction with established MRI features (binary regression model), the area under the curve (AUC) increased from 0.785 to 0.953 for differentiation of IHCA (atoll sign + hyperintensity), from 0.859 to 0.903 for bHCA (scar + hyperintensity), and from 0.899 to 0.957 for HHCA (steatosis + hypointensity). Three-dimensional region of interest (3D ROI) analysis showed significantly increased voxel heterogeneity for IHCAs (p = 0.038). Conclusion: Gd-EOB MRI is of added value for subtype differentiation of HCAs and reliably identifies the typical heterogeneous HBP uptake of IHCAs. Diagnostic accuracy can be improved significantly by the combined analysis of established morphologic MR appearances and intralesional Gd-EOB uptake. Key points: ‱Gd-EOB-enhanced MRI is of added value for subtype differentiation of HCA. ‱IHCA and HHCA can be identified reliably based on their typical Gd-EOB uptake patterns, and accuracy increases significantly when additionally taking established MR appearances into account. ‱The small numbers of bHCAs and UHCAs remain the source of diagnostic uncertainty

    Effects of Artificial Intelligence-Derived Body Composition on Kidney Graft and Patient Survival in the Eurotransplant Senior Program

    Get PDF
    The Eurotransplant Senior Program allocates kidneys to elderly transplant patients. The aim of this retrospective study is to investigate the use of computed tomography (CT) body composition using artificial intelligence (AI)-based tissue segmentation to predict patient and kidney transplant survival. Body composition at the third lumbar vertebra level was analyzed in 42 kidney transplant recipients. Cox regression analysis of 1-year, 3-year and 5-year patient survival, 1-year, 3-year and 5-year censored kidney transplant survival, and 1-year, 3-year and 5-year uncensored kidney transplant survival was performed. First, the body mass index (BMI), psoas muscle index (PMI), skeletal muscle index (SMI), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) served as independent variates. Second, the cut-off values for sarcopenia and obesity served as independent variates. The 1-year uncensored and censored kidney transplant survival was influenced by reduced PMI (p = 0.02 and p = 0.03, respectively) and reduced SMI (p = 0.01 and p = 0.03, respectively); 3-year uncensored kidney transplant survival was influenced by increased VAT (p = 0.04); and 3-year censored kidney transplant survival was influenced by reduced SMI (p = 0.05). Additionally, sarcopenia influenced 1-year uncensored kidney transplant survival (p = 0.05), whereas obesity influenced 3-year and 5-year uncensored kidney transplant survival. In summary, AI-based body composition analysis may aid in predicting short- and long-term kidney transplant survival

    HBP-enhancing hepatocellular adenomas and how to discriminate them from FNH in Gd-EOB MRI

    Get PDF
    BackgroundRecent studies provide evidence that hepatocellular adenomas (HCAs) frequently take up gadoxetic acid (Gd-EOB) during the hepatobiliary phase (HBP). The purpose of our study was to investigate how to differentiate between Gd-EOB-enhancing HCAs and focal nodular hyperplasias (FNHs). We therefore retrospectively included 40 HCAs classified as HBP Gd-EOB-enhancing lesions from a sample of 100 histopathologically proven HCAs in 65 patients. These enhancing HCAs were matched retrospectively with 28 FNH lesions (standard of reference: surgical resection). Two readers (experienced abdominal radiologists blinded to clinical data) reviewed the images evaluating morphologic features and subjectively scoring Gd-EOB uptake (25-50%, 50-75% and 75-100%) for each lesion. Quantitative lesion-to-liver enhancement was measured in arterial, portal venous (PV), transitional and HBP. Additionally, multivariate regression analyses were performed. ResultsSubjective scoring of intralesional Gd-EOB uptake showed the highest discriminatory accuracies (AUC: 0.848 (R#1); 0.920 (R#2)-p0.05). ConclusionEven in HBP-enhancing HCA, characterization of Gd-EOB uptake was found to provide the strongest discriminatory power in differentiating HCA from FNH. Furthermore, a lobulated appearance and a central scar are more frequently seen in FNH than in HCA

    Treatment of Intrahepatic Cholangiocarcinoma—A Multidisciplinary Approach

    Get PDF
    Intrahepatic cholangiocarcinoma (iCC) is distinguished as an entity from perihilar and distal cholangiocarcinoma and gallbladder carcinoma. Recently, molecular profiling and histopathological features have allowed further classification. Due to the frequent delay in diagnosis, the prognosis for iCC remains poor despite major technical advances and multimodal therapeutic approaches. Liver resection represents the therapeutic backbone and only curative treatment option, with the functional residual capacity of the liver and oncologic radicality being deciding factors for postoperative and long-term oncological outcome. Furthermore, in selected cases and depending on national guidelines, liver transplantation may be a therapeutic option. Given the often advanced tumor stage at diagnosis or the potential for postoperative recurrence, locoregional therapies have become increasingly important. These strategies range from radiofrequency ablation to transarterial chemoembolization to selective internal radiation therapy and can be used in combination with liver resection. In addition, adjuvant and neoadjuvant chemotherapies as well as targeted therapies and immunotherapies based on molecular profiles can be applied. This review discusses multimodal treatment strategies for iCC and their differential use
    • 

    corecore