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A radiomics‑based model to classify 
the etiology of liver cirrhosis using 
gadoxetic acid‑enhanced MRI
Aboelyazid Elkilany1*, Uli Fehrenbach1, Timo Alexander Auer1,2, Tobias Müller3, 
Wenzel Schöning4, Bernd Hamm1 & Dominik Geisel1

The implementation of radiomics in radiology is gaining interest due to its wide range of applications. 
To develop a radiomics‑based model for classifying the etiology of liver cirrhosis using gadoxetic 
acid‑enhanced MRI, 248 patients with a known etiology of liver cirrhosis who underwent 306 
gadoxetic acid‑enhanced MRI examinations were included in the analysis. MRI examinations were 
classified into 6 groups according to the etiology of liver cirrhosis: alcoholic cirrhosis, viral hepatitis, 
cholestatic liver disease, nonalcoholic steatohepatitis (NASH), autoimmune hepatitis, and other. MRI 
examinations were randomized into training and testing subsets. Radiomics features were extracted 
from regions of interest segmented in the hepatobiliary phase images. The fivefold cross‑validated 
models (2‑dimensional—(2D) and 3‑dimensional—(3D) based) differentiating cholestatic cirrhosis from 
noncholestatic etiologies had the best accuracy (87.5%, 85.6%), sensitivity (97.6%, 95.6%), predictive 
value (0.883, 0.877), and area under curve (AUC) (0.960, 0.910). The AUC was larger in the 2D‑model 
for viral hepatitis, cholestatic cirrhosis, and NASH‑associated cirrhosis (P‑value of 0.05, 0.05, 0.87, 
respectively). In alcoholic cirrhosis, the AUC for the 3D model was larger (P = 0.01). The overall intra‑
class correlation coefficient (ICC) estimates and their 95% confident intervals (CI) for all features 
combined was 0.68 (CI 0.56–0.87) for 2D and 0.71 (CI 0.61–0.93) for 3D measurements suggesting 
moderate reliability. Radiomics‑based analysis of hepatobiliary phase images of gadoxetic acid‑
enhanced MRI may be a promising noninvasive method for identifying the etiology of liver cirrhosis 
with better performance of the 2D‑ compared with the 3D‑generated models.

Liver cirrhosis—the end-stage of various types of chronic liver disease—is the 11th most common cause of 
death  worldwide1. Liver transplantation is the only definitive  treatment1. Patient management otherwise cru-
cially relies on the screening for and management of serious complications such as hepatocellular carcinoma 
and gastroesophageal  varices2. Chronic infection with hepatitis C virus and hepatitis B virus and alcoholic liver 
disease are the most common etiologies of liver cirrhosis  worldwide2,3. Identification of the underlying etiology 
is important for treatment selection, alleviation of disease progression, and the allocation of transplant organs 
including posttransplant follow-up4.

Liver biopsy has been the reference standard for diagnosing the etiology of liver  cirrhosis5. However, biopsy 
is invasive with an incidence of moderate to major procedure-related complications of approx. 1.2% and a mor-
tality rate of 0.4%. Other limitations of liver biopsy include inter- and intraobserver variability and sampling 
 error6–8. Such limitations emphasize the need for developing an alternative noninvasive method for identifying 
the etiology of liver cirrhosis especially in patients with indeterminate findings based on standard noninvasive 
diagnostic algorithms including physical examination, laboratory testing, biochemical markers, and imaging 
 modalities5,6,9,10.
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Gadoxetic acid-enhanced MRI provides morphological information on liver parenchyma, blood vessels, and 
the biliary tree (both anatomical and functional) while at the same time allowing detection and characterization 
of hepatic focal lesions as well as estimating functional liver capacity. Hepatocyte function—the main deter-
minant of gadoxetic acid uptake and excretion—is known to be impaired in patients with liver  cirrhosis11–13.

Radiomics analysis is a new technology based on the extraction of quantitative high-throughput features 
from radiologic images. The implementation of radiomics in radiology is gaining interest due to a wide range of 
applications such as its potential ability to characterize focal lesions including evaluation of tumor heterogeneity 
and microenvironment, phenotype classification, and prediction of response to treatment. In addition, radiomics 
models modified using the selected features can improve diagnostic accuracy, predict prognosis, and guide the 
clinical decision-making  process10,14–17.

We hypothesize that a radiomics model based on features extracted from gadoxetic acid-enhanced MRI may 
allow identification and assessment of imaging features specific for different etiologies of liver cirrhosis and thus 
improve the classification of cirrhosis etiologies in patients with an inconclusive diagnosis based on currently 
available noninvasive diagnostic tests. Therefore, the purpose of our study was to develop, train, and validate a 
radiomics-based model as a noninvasive tool to predict the etiology of liver cirrhosis using features extracted 
from hepatobiliary phase (HBP) images of gadoxetic acid-enhanced MRI.

Results
Demographic data. The study included 248 patients (mean age, 60.5 ± 13.3 years; age range, 14–88 years), 
among them 179 men (mean age, 60 ± 12.8 years; age range, 14–81 years) and 69 women (mean age, 62 ± 14.3 years; 
age range, 21–88 years). Patient demographics are presented in Table 1.

Differentiating between all included etiologies of liver cirrhosis. In one-vs-one multiclass classi-
fication differentiating between all 6 etiologies in the training subset, the fivefold cross-validated linear support 
vector machine (SVM) yielded the highest accuracy (52.8–82.5% for models derived from two-dimensional 
(2D) region of interest (ROI) and 53.6–78.5% models derived from three-dimensional (3D) volume of interest 
(VOI)). The highest sensitivity was noted with alcoholic cirrhosis (74.1% for 2D-ROI-derived models and 75.9% 
for 3D-VOI-derived models) and the highest specificity with cholestatic liver disease-induced cirrhosis (95% for 
2D and 86.7 for 3D). Without validation, the fine K nearest neighbor (KNN) classifier had the highest accuracy 
of 100% (Table 2).

Differentiating cholestatic liver disease‑induced cirrhosis from noncholestatic etiologies. In 
binary classification differentiating cholestatic liver disease-induced cirrhosis (group 3) from noncholestatic 
etiologies of cirrhosis (groups 1, 2, 4–6) in the training subset, the fivefold cross-validated ensemble classifier—
subspace discrimination—had the highest accuracy (87.6% and 85.6%), sensitivity (97.6% and 95.6%), posi-
tive predictive value (0.883 and 0.877), and the largest area under the curve (AUC) (0.83 and 0.80) in 2D- and 
3D-derived models, respectively (Table 2). Confusion matrices are listed in Fig. 1.

In logistic regression analysis of the testing subset, three of the 45 features extracted and analyzed were 
omitted (Histo_Excess Kurtosis, Histo_Entropy_log2, GLCM_Entropy_log2) because of collinearity. The largest 
AUC was observed for differentiating cholestatic liver disease-induced cirrhosis from noncholestatic etiologies 
(AUC = 0.960 for 2D-derived models and 0.910 for 3D-derived models, P < 0.001).

2D‑ vs. 3D‑generated radiomics models. Comparison of radiomics models constructed using features 
extracted from 2D ROIs and 3D VOIs revealed larger AUCs in 2D-based models for viral hepatitis (P = 0.05), 
cholestatic liver disease (P = 0.05), and nonalcoholic steatohepatitis (NASH) (P = 0.87). In alcoholic cirrhosis 
(group 1), the model constructed using 3D features had a larger AUC (0.831 for 3D-VOI-derived models vs. 
0.767 for 2D-ROI-derived models, P = 0.01) (Table 3, Fig. 2). The model differentiating cholestatic from non-
cholestatic liver cirrhosis had the largest number of statistically significant features (Table 4).

In least absolute shrinkage and selection operator (LASSO) analysis, the largest deviance ratio—in training 
(0.132 for 2D and 0.316 in 3D) and testing (0.131 for 2D and 0.196 in 3D) subsets—was observed for the model 
differentiating cholestatic liver disease-induced cirrhosis from noncholestatic etiologies (Table 5). The features 
selected with LASSO are listed in Table 6. Heat maps of the significant features were plotted (Fig. 3).

Intra‑class correlation coefficient (ICC). The overall intra-class correlation coefficient (ICC) estimates 
and their 95% confident intervals (CI) for all features combined was 0.68 (CI 0.56–0.87) for 2D and 0.71 (CI 
0.61–0.93) for 3D measurements suggesting moderate  reliability18. Individual ICC values for the most statisti-
cally relevant features in 2D- and 3D-measurments are listed in Table 7.

Discussion
Liver cirrhosis is an increasing cause of death worldwide. Approximately 1 million people die from complica-
tions of cirrhosis all over the world each year. In addition, cirrhosis accounts for 1.6% and 2.1% of the worldwide 
burden of disability-adjusted life years and years of life lost,  respectively1,6.

In the present study, we developed and evaluated a radiomics-based model to predict the etiology of liver 
cirrhosis from HBP images of gadoxetic acid-enhanced MRI. Gadoxetic acid-enhanced MRI has been previously 
investigated for the staging of liver fibrosis using radiomics  analysis10 and a deep convolutional neural network 
(DCNN)7. To the best of our knowledge, no study to date has proposed that the etiology of liver cirrhosis can be 
predicted using a radiomics-based model.
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Table 1.  Summary of patient demographics. APRI score AST-to-platelet ratio index, AST aspartate 
aminotransferase, ALT alanine aminotransferase, GGT  gamma-glutamyl transferase, ALP alkaline phosphatase, 
INR international normalized ratio, NASH nonalcoholic steatohepatitis, AIH autoimmune hepatitis, TIPS 
transjugular intrahepatic portosystemic shunt. a Focal nodular hyperplasia (n = 1), angiomyolipoma (n = 1).

Variable n Mean ± SD (min–max)

Female/male 69/179 –

Age at time of MRI acquisition (years) 248 60.5 ± 13.3 (14–88)

Amount of contrast medium (ml) 306 8.1 ± 1.4 (5–10)

APRI score 281 1.615 ± 0.079 (0.179–9.216)

Bilirubin (mg/dl) 287 1.7 ± 1.8 (0.18–11.1)

AST (U/L) 284 67.6 ± 39.3 (16–243)

ALT (U/L) 286 53.6 ± 46.5 (11–362)

GGT (U/L) 284 181.6 ± 185.9 (16–1068)

ALP (U/L) 282 159.5 ± 111.3 (35–869)

Albumin (gm/L) 161 3.5 ± 0.7 (2.03–5.2)

Platelets (×  109/L) 284 141.4 ± 83.2 (26–467)

INR 283 1.25 ± 0.28 (0.8–2.9)

Creatinine (mg/dl) 287 0.89 ± .48 (0.4–5.9)

Hepatic tumor

None 191

Hepatocellular carcinoma 110

Other malignancy (cholangiocarcinoma) 2

Benign  tumorsa 3

Etiology of liver cirrhosis

Group 1: Alcoholic cirrhosis 108

Group 2: Viral hepatitis-induced cirrhosis 93

a. Hepatitis C virus (HCV) 71

b. Hepatitis B virus (HBV) 15

c. HBV-hepatitis D virus (HDV) 6

d. HBV-HDV-HCV 1

Group 3: Cholestatic liver disease 58

a. Primary sclerosing cholangitis (PSC) 50

b. Secondary biliary cirrhosis (SBC) 5

 Biliary atresia 2

 Caroli syndrome 1

 Congenital bile duct hypoplasia 1

 Recurrent pyogenic cholangitis 1

c. Primary biliary cirrhosis (PBC) 2

d. Secondary sclerosing cholangitis (SSC) 1

Group 4: NASH-associated cirrhosis 28

Group 5: AIH-associated cirrhosis 8

Group 6: Other etiologies: 11

a. Storage disease: 7

1. Wilson disease 4

2. Hemochromatosis type I 2

3. Alpha-1 anti-trypsin deficiency 1

b. Cystic fibrosis 2

c. Budd-Chiari syndrome (BCS) 1

d. Drug-induced (azathioprine) 1

Indications for gadoxetic acid-enhanced MRI

1. Workup of patients with liver cirrhosis 8

2. Screening for suspected focal lesion 178

3. Characterization of focal lesion 66

4. Evaluation for liver transplantation 15

5. Evaluation of patients with PSC 35

6. Evaluation for TIPS 2

7. Evaluation of jaundice 2
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The fivefold validated radiomics models created using HBP images acquired with gadoxetic acid-enhanced 
MRI allowed classification of the etiology of liver cirrhosis with AUCs of 0.767–0.960, accuracies of 52.8–87.6%, 
and positive predictive values of 0.377–0.883. The highest diagnostic accuracy of 87.6% was achieved for the 
2D-based model differentiating cholestatic liver disease-induced cirrhosis from noncholestatic etiologies.

During the process of radiomics model building, we investigated different techniques, including supervised 
machine learning and LASSO regression analysis, to explore characteristics and identify the optimal features 
for model construction. LASSO turned out to several advantages as it reduces redundancy, dependency, and 
dimensionality of the features and thus enhances model  accuracy19. In addition, LASSO enables the generation 

Table 2.  Performance metrics of machine learning-based classification of radiomics features in the training 
subset. MCC Matthews correlation coefficient.

Linear support vector machine (SVM)
Subspace 
discrimination

Alcoholic 
cirrhosis Viral hepatitis

Cholestatic liver 
disease

Cholestatic liver 
disease

2D 3D 2D 3D 2D 3D 2D 3D

Sensitivity 0.741 0.759 0.419 0.294 0.271 0.390 0.976 0.956

Specificity 0.412 0.414 0.836 0.832 0.950 0.867 0.458 0.441

Accuracy 0.528 0.536 0.725 0.690 0.825 0.785 0.876 0.856

Positive predictive value 0.406 0.414 0.482 0.386 0.552 0.377 0.883 0.877

Negative predictive value 0.746 0.759 0.799 0.766 0.852 0.873 0.818 0.703

False positive rate 0.588 0.586 0.164 0.168 0.050 0.133 0.542 0.559

False negative rate 0.259 0.241 0.581 0.706 0.729 0.610 0.024 0.045

False discovery rate 0.594 0.586 0.519 0.614 0.448 0.623 0.117 0.123

F1 score 0.525 0.536 0.448 0.333 0.364 0.383 0.927 0.915

MCC 0.152 0.173 0.267 0.138 0.299 0.253 0.551 0.479

A. 1 80
74%

24
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Figure 1.  Confusion matrix of the training subset showing etiology predicted by the radiomics model in 
comparison to the diagnostically established etiology of liver cirrhosis. The shaded cells indicate correct 
predictions by the radiomics model. A and B are confusion matrices for all groups constructed using features 
extracted from 2-dimensional (2D) (A) and 3-dimensional (3D) (B) features. C and D are confusion matrices 
for noncholestatic (0) vs. cholestatic (1) liver cirrhosis in 2D (C) and 3D (D) models.
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of interpretable models using variable selection and regularization as well as integration of selected features into 
a radiomics  signature19. As for classification algorithms, we used both binary and multinomial classification. 
However, a binary model yields a single probability value, which can be more readily interpreted than a multi-
nomial model, while the latter is more complex and returns multiple probability values for different etiologies of 
liver  cirrhosis10. This explains the higher performance metrics we obtained for the binary model differentiating 
cholestatic liver disease-induced cirrhosis from noncholestatic cirrhosis.

In addition, we constructed the radiomics models using features generated from 2D ROIs and 3D VOIs. In 
general, segmentation of the 3D VOI was easier and faster. However, the 2D-generated models performed better 
as evidenced by better results in terms of accuracy, sensitivity, predictive values, and AUCs except for alcoholic 
cirrhosis, where the performance of the 3D-based model was better. A possible explanation might be that in 2D 

Table 3.  Logistic regression analysis of the testing subset for alcoholic cirrhosis, viral hepatitis-induced 
cirrhosis, cholestatic liver disease-induced cirrhosis, and NASH-associated cirrhosis. NASH nonalcoholic 
steatohepatitis.

ROI N of features ROC area SE
[95% conf. 
interval] LR  chi2 P-value Chi2 P-value

Alcoholic cirrhosis
2D 42 0.767 0.028 0.713 0.821 67.31 0.01 3.09 0.01

3D 42 0.831 0.024 0.785 0.877 102.92  < 0.001

Viral hepatitis
2D 42 0.841 0.024 0.794 0.887 102.46  < 0.001 3.75 0.05

3D 42 0.769 0.028 0.714 0.825 64.95 0.01

Cholestatic liver disease
2D 42 0.960 0.011 0.937 0.982 187.60  < 0.001 3.70 0.05

3D 42 0.910 0.023 0.864 0.955 141.13  < 0.001

NASH cirrhosis
2D 42 0.896 0.029 0.840 0.952 61.87 0.02 0.03 0.87

3D 42 0.889 0.027 0.836 0.943 62.99 0.02

Figure 2.  ROC curves of the testing subset for prediction of different etiologies of liver cirrhosis. Prediction of 
different etiologies of liver cirrhosis using one-vs-all multiclass logistic regression comparison between 2D- and 
3D-extracted features in the following subgroups: alcoholic cirrhosis (a), viral hepatitis (b), cholestatic liver 
disease (c), and nonalcoholic steatohepatitis (NASH)-associated cirrhosis (d).
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ROIs a more representative sample of the liver parenchyma was analyzed since an entire axial section of the liver 
parenchyma was segmented, while 3D VOIs only covered a volume in the right lobe, which might have rendered 
3D-based models less accurate in view of the inhomogeneous distribution of parenchymal involvement as in 
patients with primary sclerosing cholangitis (PSC). We considered segmentation of the entire liver parenchyma 
for 3D VOI measurements. However, we might argue that segmentation of the whole liver in 3D VOI might 
be a source of bias and renders the results less accurate since it would be difficult to exclude focal lesions, large 
(> 5 mm) blood vessels / bile ducts, as well as regions severely affected by artefacts. Furthermore, Segmentation 
of the whole liver would be time consuming and our target was to investigate a gadoxetic acid-enhanced MRI-
based radiomics model that could be easily integrated into routine clinical practice.

Liver biopsy is indicated if noninvasive diagnostic tests fail to yield a definitive etiology of liver cirrhosis. It is 
a valuable means for diagnosis and differentiation of a wide range of liver diseases such as storage and metabolic 
diseases, autoimmune hepatitis (AIH), fatty liver diseases, and cholestatic liver diseases (such as small-duct 
PSC and immunoglobulin G4-associated cholangitis)20. Should the radiomics model prove to be comparable to 
liver biopsy in identifying the etiology of liver cirrhosis, this would have important benefits for patients, since 
radiomics analysis does not involve any invasive procedures.

Our study has several limitations. First, we used a retrospective study design. Second, the small popula-
tion size and the uneven distribution of patients among subgroups are major limitations. Only a few MRI 

Table 4.  List of statistically significant features in regression analysis for alcoholic cirrhosis, viral hepatitis-
induced cirrhosis, cholestatic liver disease-induced cirrhosis, and NASH-associated cirrhosis (groups 1–4). 
NASH nonalcoholic steatohepatitis.

Features Coef. SE z P > |z| [95% conf. interval]

Alcoholic cirrhosis

2D CONVENTIONAL_max 0.0712956 0.0348565 2.05 0.04 0.0029781 0.1396132

3D

CONVENTIONAL_max 0.1989438 0.075095 2.65 0.01 0.0517602 0.3461273

GLRLM_LRE − 1050.114 453.8196 − 2.31 0.02 − 1939.584 − 160.6442

GLRLM_LRHGE 0.426994 0.2022717 2.11 0.04 0.0305487 0.8234393

NGLDM_Coarseness 3051.282 1284.05 2.38 0.02 534.5903 5567.974

NGLDM_Busyness − 23.82545 11.01355 − 2.16 0.03 − 45.41161 − 2.239284

GLZLM_LZE 0.1837164 0.0641918 2.86 0.004 0.0579028 0.3095301

GLZLM_LZLGE − 53.82372 21.954 − 2.45 0.01 − 96.85278 − 10.79467

GLZLM_LZHGE − 0.0000814 0.0000276 − 2.95 0.003 − 0.0001354 − 0.0000273

Viral hepatitis-induced cirrhosis

2D

CONVENTIONAL_mean 1.670268 0.5492802 3.04 0.002 0.593699 2.746838

CONVENTIONAL_max − 0.1798322 0.0577049 − 3.12 0.002 − 0.2929318 − 0.0667326

CONVENTIONAL_Q1 − 0.4539752 0.2094595 − 2.17 0.03 − 0.8645083 − 0.0434422

CONVENTIONAL_Q2 − 0.5317651 0.1754611 − 3.03 0.002 − 0.8756625 − 0.1878677

GLRLM_SRE − 924.9035 381.044 − 2.43 0.02 − 1671.736 − 178.0709

GLRLM_SRLGE 141,500.8 67,559.34 2.09 0.04 9086.91 273,914.7

3D
CONVENTIONAL_max − 0.1075124 0.0513998 − 2.09 0.04 − 0.2082541 − 0.0067707

GLZLM_ZLNU 0.0130915 0.0055781 2.35 0.02 0.0021587 0.0240244

Cholestatic liver disease

2D

CONVENTIONAL_Q1 0.7107639 0.3471205 2.05 0.04 0.0304201 1.391108

GLCM_HomoInver − 791.7399 303.4408 − 2.61 0.01 − 1386.473 − 197.0068

GLCM_ContrastVariance 2.333679 0.7833899 2.98 0.003 0.7982625 3.869095

GLCM_Correlation − 83.41012 31.7738 − 2.63 0.01 − 145.6856 − 21.13461

GLCM_Entropy_log10 165.4433 57.34275 2.89 0.004 53.05358 277.833

GLCM_Dissimilarity − 75.27131 22.82484 − 3.30 0.001 − 120.0072 − 30.53545

GLRLM_RP − 2431.182 1162.547 − 2.09 0.04 − 4709.732 − 152.632

NGLDM_Coarseness − 5429.448 1713.633 − 3.17 0.002 − 8788.107 − 2070.79

GLZLM_ZLNU − 0.0189983 0.0081357 − 2.34 0.02 − 0.034944 − 0.0030526

3D

GLCM_Entropy_log10 134.0574 58.20325 2.30 0.02 19.98115 248.1337

GLRLM_HGRE 3.580224 1.734314 2.06 0.04 0.1810302 6.979418

GLRLM_SRHGE − 2.977383 1.476149 − 2.02 0.04 − 5.870582 − 0.0841828

GLRLM_LRHGE − 0.5973161 0.2734658 − 2.18 0.03 − 1.133299 − 0.061333

NGLDM_Coarseness − 7320.082 3178.125 − 2.30 0.02 − 13,549.09 − 1091.071

GLZLM_HGZE − 0.0655245 0.033125 − 1.98 0.048 − 0.1304483 − 0.0006008

NASH-associated cirrhosis

3D GLZLM_ZP 227.2353 114.078 1.99 0.046 3.646499 450.824
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examinations were available for cross-validation, especially for NASH- and AIH-associated cirrhosis. We had to 
combine patients into broader categories including multiple related etiologies—as in cholestatic liver disease and 
viral hepatitis-induced cirrhosis—to further improve the models. Model performance might have been better if 
the number of MRI examinations had been larger and more balanced across different subgroups. Future studies 
need to involve more patients to further explore the possibility of subgroup analysis such as identification of 
different etiologies of cholestatic liver disease, which is currently an indication for liver biopsy. Third, the still 
developing radiomics technology is another major limitation. No standardized definition of radiomics-based fea-
tures has been  established21. Fourth, the ICC had moderate reliability. This could be explained by the low number 
of patients, which might have hindered a robust estimation of interobserver reproducibility of the interpreted 

Table 5.  Results of the least absolute shrinkage and selection operator (LASSO) logistic regression model for 
training and testing subsets. NASH, nonalcoholic steatohepatitis.

Training (n = 245) Testing (n = 61)

Deviance ratio Deviance ratio

Alcoholic cirrhosis

2D 1.213 0.060 1.299 0.020

3D 1.179 0.094 1.178 0.086

Cholestatic liver disease

2D 0.807 0.132 1.000 0.131

3D 0.669 0.316 0.798 0.196

Viral hepatitis

2D 1.205 0.032 1.166 − 0.013

3D 1.073 0.072 1.552 − 0.125

NASH cirrhosis

2D 0.502 0.112 0.766 0.014

3D 0.530 0.064 0.820 − 0.056

Table 6.  Features selected using the least absolute shrinkage and selection operator (LASSO) logistic 
regression analysis. NASH, nonalcoholic steatohepatitis.

Cholestatic liver disease Alcoholic cirrhosis Viral hepatitis NASH cirrhosis

Features selected Deviance Features selected Deviance Features selected Deviance Features selected Deviance

2D

CONVEN-
TIONAL_std 0.337 CONVEN-

TIONAL_std − 0.139 CONVEN-
TIONAL_min 0.003 GLRLM_RLNU 0.196

CONVEN-
TIONAL_Q2 0.220 CONVEN-

TIONAL_max − 0.266 CONVEN-
TIONAL_mean 0.145 GLZLM_ZLNU 0.498

HISTO_Skewness − 0.088 HISTO_Kurtosis − 0.180 GLCM_Correla-
tion − 0.106 Constant − 2.603

GLCM_Dissimi-
larity − 0.258 GLRLM_LRLGE 0.072 GLRLM_RLNU − 0.084

GLRLM_GLNU 0.334 GLRLM_GLNU − 0.057 Constant − 0.789

GLRLM_RLNU 0.043 Constant − 0.666

Constant − 1.678

3D

CONVEN-
TIONAL_min − 0.181 CONVEN-

TIONAL_std − 0.287 CONVEN-
TIONAL_min 0.350 CONVEN-

TIONAL_min 0.083

CONVEN-
TIONAL_std 0.608 CONVEN-

TIONAL_Q3 − 0.254 GLZLM_LGZE 0.202 GLCM_HomoIn-
ver − 0.546

GLCM_HomoIn-
ver 0.610 HISTO_Kurtosis − 0.324 GLZLM_SZLGE 0.061 GLCM_Entropy_

log10 0.036

GLRLM_RP − 0.006 GLCM_HomoIn-
ver − 0.038 Constant − 1.059 NGLDM_Busy-

ness − 0.230

NGLDM_Coarse-
ness − 0.418 GLCM_Dissimi-

larity 0.090 Constant − 2.517

GLZLM_SZE 0.778 GLRLM_RLNU 0.090

GLZLM_SZLGE 0.057 GLZLM_SZLGE − 0.224

GLZLM_SZHGE 0.008 GLZLM_LZLGE 0.203

GLZLM_LZLGE − 0.588 Constant − 0.674

GLZLM_GLNU − 0.619

GLZLM_ZP − 0.760

Constant − 1.803



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10778  | https://doi.org/10.1038/s41598-021-90257-9

www.nature.com/scientificreports/

radiomics features. Fifth, we did not evaluate how model performance may be affected by various demographic 
characteristics and clinical settings such as patient age, aspartate transaminase-to-platelet ratio index (APRI) 
score, or presence of focal liver lesions. Sixth, no fixed patient characteristics for either the training or the testing 
collectives was feasible because of the random selection of MRI examinations in the fivefold cross-validation. 
Finally, we only used HBP images to evaluate radiomics features. Performance of the model might be improved 
by including several pulse sequences in the analysis, especially diffusion-weighted images, T1-weighted images 
(with and without fat suppression), and T2-weighted-images (with and without fat suppression).

In conclusion, radiomics-based analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI may 
be a promising noninvasive method for identifying the etiology of liver cirrhosis with better performance of the 
2D- compared with the 3D-generated models. This approach needs to be validated in future prospective studies 
in larger patient populations.

Figure 3.  Heat maps generated from 2-dimenensional (a) and 3-dimensional (b) ROIs segmented in HBP 
images and demonstrating the distribution of significant features in the study population.
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Patients and methods
Patient population and study design. We retrospectively identified all patients (n = 524) with confirmed 
etiology of liver cirrhosis who underwent gadoxetic acid-enhanced MRI (n = 766) at our institution between 
January 2014 and August 2019. The etiology of liver cirrhosis was diagnosed by hepatologists primarily based on 
clinical examination and laboratory parameters, supported by characteristic imaging findings on gadoxetic acid-
enhanced MRI such as in patients with cholestatic liver disease-induced cirrhosis. Histopathological diagnosis 
(i.e., liver biopsy) was reserved for patients in whom definite diagnosis of the etiology of liver cirrhosis was not 
confirmed by the above-mentioned methods, primarily in patients with autoimmune hepatitis-induced cirrho-
sis, NASH-associated cirrhosis, and patients in group 6 (other etiologies).

The study was approved by the local institutional review board (ethics committee of the Charité–Univer-
sitätsmedizin Berlin) and carried out in accordance with relevant guidelines and regulations. Informed consent 
was waived by the ethics committee of the Charité–Universitätsmedizin Berlin.

Inclusion criteria were: a confirmed etiology of liver cirrhosis, no previous liver transplantation or cancer-
related treatment including surgical resection or locoregional interventions for liver tumors, no infiltrative or 
large hepatic focal lesions which could preclude segmentation of ROIs, and completion of the MRI examination. 
Exclusion criteria were: unconfirmed etiology of liver cirrhosis (including 35 patients (38 MRI scans) who were 
diagnosed with cryptogenic cirrhosis), past history of liver transplantation, liver resection or locoregional inter-
vention for management of hepatic malignancy, presence of infiltrative or large tumor for which it was difficult 
to draw ROIs, and nondiagnostic image quality due to severe artifacts or technical problems during acquisition 
resulting in incomplete MRI examination.

After exclusion, 248 patients who underwent 306 MRI examinations remained for analysis (Fig. 4). The study 
population included 8 patients (8 MRI scans) with malignant portal vein thrombosis (PVT), 4 patients (4 MRI 
scans) with benign PVT, and 2 patients (4 MRI scans) who were on systemic sorafenib therapy (Nexavar, Bayer 
Pharma AG, Berlin, Germany).

Etiology of liver cirrhosis. MRI examinations were divided into 6 groups based on the etiology of liver 
cirrhosis (Table 1):

1. Group 1: Alcoholic cirrhosis (n = 108).
2. Group 2: Viral hepatitis-induced cirrhosis (n = 93).
3. Group 3: Cholestatic liver disease-induced cirrhosis (n = 58).
4. Group 4: NASH-associated cirrhosis (n = 28).
5. Group 5: AIH-associated cirrhosis (n = 8).
6. Group 6: Other etiologies (n = 11).

Laboratory parameters and serum fibrosis/cirrhosis test. Liver function tests (aspartate ami-
notransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, serum total bili-
rubin, and serum albumin), kidney function tests (serum creatinine and estimated glomerular filtration rate), 
international normalized ratio, and platelets, performed within 1 month before or after gadoxetic acid-enhanced 
MRI were selected for analysis. The APRI score (n = 281) was calculated as follows: (aspartate transaminase 
[IU/L]/aspartate transaminase upper normal limit)/platelet count [×  109/L]22.

MRI examinations. All MRI examinations were performed on a 1.5 T Magnetom Aera (Siemens Health-
care, Erlangen, Germany) using an eight-channel body phased-array coil. Transverse T1-weighted images 
(T1WIs) (volume-interpolated breath-hold examination (VIBE) sequence covering the entire liver with 60–80 
slices and an adjusted field of view of 255–300 × 340–400 mm) were acquired before and approximately 20 min 
after manual intravenous bolus administration of 0.1 ml per kg body weight of gadoxetic acid (Gd-EOB-DTPA, 
gadoxetate disodium; Primovist/Eovist, Bayer HealthCare, Berlin, Germany)23. Imaging parameters were as fol-
lows: repetition time (TR) of 4.58 ms, echo time (TE) of 2.25 ms, flip angle (FA) of 9°, slice thickness of 3 mm, 
and matrix size of 276 × 340.

Table 7.  Individual intraclass correlation coefficient (ICC) values for the most statistically relevant features.

ICC

2D ROI 3D VOI

CONVENTIONAL_std 0.754 0.441

CONVENTIONAL_Q3 0.198 0.754

HISTO_Excess Kurtosis 0.534 0.614

GLCM_Energy 0.323 0.394

GLCM_Entropy_log2 0.573 0.810

GLZLM_ZP 0.581 0.379
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Workflow of radiomics model. The workflow included four steps: liver parenchymal segmentation, fea-
ture extraction, model construction, and, finally, model evaluation.

A reader with 10 years of experience in abdominal imaging and MRI who was blinded to the patients’ clinical 
and laboratory findings reviewed all MRI examinations and extracted radiomics features. To assess interobserver 
reproducibility using intra-class correlation coefficient (ICC), a second reader with 5 years of experience extracted 
the features in a randomly selected group of 30 patients. Axial VIBE T1WIs acquired approximately 20 min after 
gadoxetic acid administration, i.e., in the HBP, were imported into the radiomics platform as Digital Imaging 
and Communications in Medicine (DICOM) files. Texture analysis was performed using LIFEx software, version 
5.10 (French Alternative Energies and Atomic Energy Commission, http:// www. lifex soft. org)24.

Liver parenchymal segmentation. Two-dimensional ROI and 3D VOI were segmented using drawing 
tools in the LIFEx software. The 2D ROI was drawn manually just above the level of the right portal vein, cover-
ing an entire slice of the liver parenchyma using 2D drawing tool (mean area, 41.56 ± 10.56  cm2; range, 17.8–74.3 
 cm2). A 3D VOI measuring about 40  mm3 (mean volume, 40.8 ± 6  cm3; range, 13.8–63.6  cm3) was segmented 
using 3D drawing tool, in the right posterior segment of the liver. The ROIs and VOIs were drawn 5 mm away 
from the liver capsule, avoiding large blood vessels (caliber ˃ 5  mm), dilated bile ducts, tumor masses, and 
artifacts (Fig. 5). The performance of radiomics models generated using 2D- and 3D- extracted features was 
compared.

Radiomics feature extraction. A total of 45 features were extracted from the delineated ROIs. The 
extracted features were divided into two categories: nontextural features and textural features. In the first order, 
nontextural features including histogram-based indices and conventional indices were extracted. In the sec-
ond or higher order, textural features were extracted based on four textural matrixes: grey-level co-occurrence 

Figure 4.  Flow chart of inclusion and exclusion of patients with liver cirrhosis who underwent gadoxetic 
acid-enhanced MRI. *7 patients (8 MRI) had malignant portal vein thrombosis. **MRI examinations were 
discontinued prematurely, and no hepatobiliary phase was acquired.

http://www.lifexsoft.org
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Figure 5.  Gadoxetic acid-enhanced hepatobiliary phase (HBP) MR images showing region of interest (ROI) 
segmentation in two-dimensional (2D) and three-dimensional (3D) format. HBP images, axial before (a) and 
after (b,c) 2D (b) and 3D (c) ROI segmentation as well as coronal (d) reconstructed images showing 3D ROI 
segmentation. Patient 1 is a 36-year-old female with nonalcoholic steatohepatitis (NASH)-associated liver 
cirrhosis. Patient 2 is a 47-year-old male with primary sclerosing cholangitis complicated by liver cirrhosis.
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matrix (GLCM), neighborhood grey-level different matrix (NGLDM), grey-level run-length matrix (GLRLM), 
and grey-level size zone matrix (GLSZM). The extracted features are listed in supplementary Table 1.

Preprocessing before feature extraction included image spatial resampling and gray-level normalization. Voxel 
sizes were resampled to the same size of 1.2 × 1.2 × 3  mm3 using the relative intensity resampling method between 
the minimum and the maximum in the VOI. Image gray-level intensity was normalized to a scale of 1 to  6424.

Radiomics model construction and evaluation. All MRI examinations included in the study were 
randomized in a 4:1 ratio into training (n = 245) and testing (n = 61) subsets using computer-generated random 
numbers without matching any patient characteristics.

In the training subset, the LASSO logistic regression model with fivefold cross-validation was used to select 
the optimal and most informative features for predicting the etiology of liver cirrhosis. The selected features 
were subjected to further selection and modeling via binary logistic regression with elastic net regularization. 
Elimination of unreliable and statistically insignificant features was important to avoid overfitting and thus 
decrease running time and increase accuracy of the radiomics  model19. A further step was to choose suitable 
classifiers. The radiomics signature was calculated using supervised classification algorithms. One-vs-one mul-
ticlass classification was used to differentiate between all groups (6 classes) while binary classification was used 
to distinguish between cholestatic and noncholestatic liver cirrhosis. The classification algorithms used are listed 
in supplementary Table 2. Following completion of training on classifiers, the testing subset was analyzed to 
determine the diagnostic performance of the models constructed in predicting the etiology of liver cirrhosis. 
Sensitivity, specificity, predictive values, accuracy, and receiver operating characteristic (ROC) curves were 
analyzed to evaluate the performance of the radiomics models.

Statistical analysis. LASSO logistic regression was performed using Stata/MP version 16.0 (StataCorp, 
College Station, Texas, USA). Performance of logistic regression model was evaluated using AUC of the ROC 
curve. Statistical comparison of 2D and 3D ROIs was performed using the chi-square test. Classification with 
different methods and ROC analysis were performed with MATLAB R2019b (MathWorks, Natick, MA, USA). 
Heat maps of the statistically significant features were plotted using the “heatmap.2” package of R (R software 
version 3.6.3, R Foundation for Statistical Computing, Vienna, Austria, https:// www.r- proje ct. org). Other statis-
tical analyses were performed with Stata/MP.

Intraclass correlation coefficient (ICC) was evaluated based on a two-way mixed-effects model for abso-
lute agreement. The 95% confidence intervals were calculated using 1000 bootstrap  iterations25,26. Comparison 
between different AUC values was calculated using the nonparametric method by DeLong et al.27 Categorical 
data are provided as absolute numbers (percentages) and continuous variables as mean ± SD. P-values < 0.05 
were considered statistically significant.

Received: 28 August 2020; Accepted: 7 May 2021

References
 1. Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171. https:// doi. 

org/ 10. 1016/j. jhep. 2018. 09. 014 (2019).
 2. Tsochatzis, E. A., Bosch, J. & Burroughs, A. K. Liver cirrhosis. Lancet 383, 1749–1761. https:// doi. org/ 10. 1016/ S0140- 6736(14) 

60121-5 (2014).
 3. Romanelli, R. G. & Stasi, C. Recent advancements in diagnosis and therapy of liver cirrhosis. Curr. Drug Targets 17, 1804–1817. 

https:// doi. org/ 10. 2174/ 13894 50117 66616 06131 01413 (2016).
 4. Larrey, D., Meunier, L. & Ursic-Bedoya, J. Liver biopsy in chronic liver diseases: Is there a favorable benefit: Risk balance?. Ann. 

Hepatol. 16, 487–489. https:// doi. org/ 10. 5604/ 01. 3001. 0010. 0272 (2017).
 5. Fukui, H. et al. Evidence-based clinical practice guidelines for liver cirrhosis 2015. J. Gastroenterol. 51, 629–650. https:// doi. org/ 

10. 1007/ s00535- 016- 1216-y (2016).
 6. D’Souza, J. C. et al. B-mode ultrasound for the assessment of hepatic fibrosis: A quantitative multiparametric analysis for a radiom-

ics approach. Sci. Rep. 9, 8708–8708. https:// doi. org/ 10. 1038/ s41598- 019- 45043-z (2019).
 7. Yasaka, K., Akai, H., Kunimatsu, A., Abe, O. & Kiryu, S. Liver fibrosis: Deep convolutional neural network for staging by using 

gadoxetic acid-enhanced hepatobiliary phase MR images. Radiology 287, 146–155. https:// doi. org/ 10. 1148/ radiol. 20171 71928 
(2018).

 8. Choi, K. J. et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced 
CT images in the liver. Radiology 289, 688–697. https:// doi. org/ 10. 1148/ radiol. 20181 80763 (2018).

 9. Yasaka, K., Akai, H., Kunimatsu, A., Abe, O. & Kiryu, S. Deep learning for staging liver fibrosis on CT: A pilot study. Eur. Radiol. 
28, 4578–4585. https:// doi. org/ 10. 1007/ s00330- 018- 5499-7 (2018).

 10. Park, H. J. et al. Radiomics analysis of gadoxetic acid-enhanced mri for staging liver fibrosis. Radiology 290, 380–387. https:// doi. 
org/ 10. 1148/ radiol. 20181 81197 (2019).

 11. Yang, D., Li, D., Li, J., Yang, Z. & Wang, Z. Systematic review: The diagnostic efficacy of gadoxetic acid-enhanced MRI for liver 
fibrosis staging. Eur. J. Radiol. 125, 108857. https:// doi. org/ 10. 1016/j. ejrad. 2020. 108857 (2020).

 12. Ringe, K. I. et al. Gadoxetate disodium in patients with primary sclerosing cholangitis: An analysis of hepatobiliary contrast excre-
tion. J. Magn. Reson. Imaging 40, 106–112. https:// doi. org/ 10. 1002/ jmri. 24381 (2014).

 13. Pastor, C. M., Müllhaupt, B. & Stieger, B. The role of organic anion transporters in diagnosing liver diseases by magnetic resonance 
imaging. Drug Metab. Dispos. 42, 675–684. https:// doi. org/ 10. 1124/ dmd. 113. 055707 (2014).

 14. Li, W. et al. Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis. Eur. Radiol. 29, 1496–1506. 
https:// doi. org/ 10. 1007/ s00330- 018- 5680-z (2019).

 15. Wu, J. et al. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic reso-
nance images. BMC Med. Imaging 19, 23. https:// doi. org/ 10. 1186/ s12880- 019- 0321-9 (2019).

 16. Peng, J. et al. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepa-
tocellular carcinoma. Diagn. Interv. Radiol. 24, 121–127. https:// doi. org/ 10. 5152/ dir. 2018. 17467 (2018).

https://www.r-project.org
https://doi.org/10.1016/j.jhep.2018.09.014
https://doi.org/10.1016/j.jhep.2018.09.014
https://doi.org/10.1016/S0140-6736(14)60121-5
https://doi.org/10.1016/S0140-6736(14)60121-5
https://doi.org/10.2174/1389450117666160613101413
https://doi.org/10.5604/01.3001.0010.0272
https://doi.org/10.1007/s00535-016-1216-y
https://doi.org/10.1007/s00535-016-1216-y
https://doi.org/10.1038/s41598-019-45043-z
https://doi.org/10.1148/radiol.2017171928
https://doi.org/10.1148/radiol.2018180763
https://doi.org/10.1007/s00330-018-5499-7
https://doi.org/10.1148/radiol.2018181197
https://doi.org/10.1148/radiol.2018181197
https://doi.org/10.1016/j.ejrad.2020.108857
https://doi.org/10.1002/jmri.24381
https://doi.org/10.1124/dmd.113.055707
https://doi.org/10.1007/s00330-018-5680-z
https://doi.org/10.1186/s12880-019-0321-9
https://doi.org/10.5152/dir.2018.17467


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10778  | https://doi.org/10.1038/s41598-021-90257-9

www.nature.com/scientificreports/

 17. Xu, X. et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. 
J. Hepatol. 70, 1133–1144. https:// doi. org/ 10. 1016/j. jhep. 2019. 02. 023 (2019).

 18. Portney, L. G. & Watkins, M. P. Foundations of Clinical Research: Applications to Practice Vol. 892 (Prentice Hall Upper Saddle 
River, 2009).

 19. Fan, Y. et al. Radiomics-based machine learning technology enables better differentiation between glioblastoma and anaplastic 
oligodendroglioma. Front. Oncol. 9, 1164. https:// doi. org/ 10. 3389/ fonc. 2019. 01164 (2019).

 20. Tannapfel, A., Dienes, H.-P. & Lohse, A. W. The indications for liver biopsy. Dtsch. Arztebl. Int. 109, 477–483. https:// doi. org/ 10. 
3238/ arzte bl. 2012. 0477 (2012).

 21. Zwanenburg, A. et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput 
image-based phenotyping. Radiology https:// doi. org/ 10. 1148/ radiol. 20201 91145 (2020).

 22. Wai, C. T. et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. 
Hepatology 38, 518–526. https:// doi. org/ 10. 1053/ jhep. 2003. 50346 (2003).

 23. Theilig, D. et al. Evaluating hepatotoxic effects of chemotherapeutic agents with gadoxetic-acid-enhanced magnetic resonance 
imaging. Eur. J. Radiol. 124, 108807. https:// doi. org/ 10. 1016/j. ejrad. 2019. 108807 (2020).

 24. Nioche, C. et al. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the char-
acterization of tumor heterogeneity. Cancer Res. 78, 4786–4789. https:// doi. org/ 10. 1158/ 0008- 5472. CAN- 18- 0125 (2018).

 25. Shrout, P. E. & Fleiss, J. L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 86, 420–428. https:// doi. org/ 10. 
1037// 0033- 2909. 86.2. 420 (1979).

 26. Liljequist, D., Elfving, B. & Skavberg Roaldsen, K. Intraclass correlation - A discussion and demonstration of basic features. PLoS 
ONE 14, e0219854. https:// doi. org/ 10. 1371/ journ al. pone. 02198 54 (2019).

 27. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating 
characteristic curves: A nonparametric approach. Biometrics 44, 837–845 (1988).

Acknowledgements
The authors thank Bettina Herwig for language editing.

Author contributions
A.E. did the literature search, collected the data, helped in interpretation of data, helped with study design, and 
drafted the manuscript. T.A. performed the segmentation on a subgroup of patients to evaluate ICC. U.F., T.M., 
and W.S. helped in data acquisition, literature search and interpretation of data. B.H. revised the manuscript 
critically for important intellectual content. D.G. designed the study, was responsible for study coordination, 
performed the statistics and data analysis, and revised the manuscript critically for important intellectual content. 
All authors reviewed and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
Dominik Geisel received travel support und speaker honoraries from Bayer AG.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 90257-9.

Correspondence and requests for materials should be addressed to A.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.3389/fonc.2019.01164
https://doi.org/10.3238/arztebl.2012.0477
https://doi.org/10.3238/arztebl.2012.0477
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1053/jhep.2003.50346
https://doi.org/10.1016/j.ejrad.2019.108807
https://doi.org/10.1158/0008-5472.CAN-18-0125
https://doi.org/10.1037//0033-2909.86.2.420
https://doi.org/10.1037//0033-2909.86.2.420
https://doi.org/10.1371/journal.pone.0219854
https://doi.org/10.1038/s41598-021-90257-9
https://doi.org/10.1038/s41598-021-90257-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A radiomics-based model to classify the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI
	Results
	Demographic data. 
	Differentiating between all included etiologies of liver cirrhosis. 
	Differentiating cholestatic liver disease-induced cirrhosis from noncholestatic etiologies. 
	2D- vs. 3D-generated radiomics models. 
	Intra-class correlation coefficient (ICC). 

	Discussion
	Patients and methods
	Patient population and study design. 
	Etiology of liver cirrhosis. 
	Laboratory parameters and serum fibrosiscirrhosis test. 
	MRI examinations. 
	Workflow of radiomics model. 
	Liver parenchymal segmentation. 
	Radiomics feature extraction. 
	Radiomics model construction and evaluation. 
	Statistical analysis. 

	References
	Acknowledgements


