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Abstract: The Eurotransplant Senior Program allocates kidneys to elderly transplant patients. The
aim of this retrospective study is to investigate the use of computed tomography (CT) body com-
position using artificial intelligence (AI)-based tissue segmentation to predict patient and kidney
transplant survival. Body composition at the third lumbar vertebra level was analyzed in 42 kidney
transplant recipients. Cox regression analysis of 1-year, 3-year and 5-year patient survival, 1-year,
3-year and 5-year censored kidney transplant survival, and 1-year, 3-year and 5-year uncensored
kidney transplant survival was performed. First, the body mass index (BMI), psoas muscle index
(PMI), skeletal muscle index (SMI), visceral adipose tissue (VAT), and subcutaneous adipose tis-
sue (SAT) served as independent variates. Second, the cut-off values for sarcopenia and obesity
served as independent variates. The 1-year uncensored and censored kidney transplant survival
was influenced by reduced PMI (p = 0.02 and p = 0.03, respectively) and reduced SMI (p = 0.01 and
p = 0.03, respectively); 3-year uncensored kidney transplant survival was influenced by increased VAT
(p = 0.04); and 3-year censored kidney transplant survival was influenced by reduced SMI (p = 0.05).
Additionally, sarcopenia influenced 1-year uncensored kidney transplant survival (p = 0.05), whereas
obesity influenced 3-year and 5-year uncensored kidney transplant survival. In summary, AI-based
body composition analysis may aid in predicting short- and long-term kidney transplant survival.

Keywords: kidney transplant; transplantation; Eurotransplant Senior Program (ESP); body composition;
computed tomography (CT); artificial intelligence (AI)

1. Introduction

In an aging society, frailty is one of the largest challenges facing healthcare as patients
who suffer from sarcopenia, cachexia, and obesity are at risk for prolonged hospitalization,
perioperative complications, and poorer overall survival [1,2]. Therefore, appropriate
identification of these patients at risk is desirable. Unlike the body mass index (BMI),
artificial intelligence (AI)-based analysis of body composition can differentiate the relative
proportions of various tissues using muscle and adipose tissue parameters including the
skeletal muscle index (SMI), psoas muscle index (PMI), visceral adipose tissue (VAT), and
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subcutaneous adipose tissue (SAT) [3]. Additionally, body composition analysis can be used
to detect sarcopenia, which is defined as the presence of low muscle mass using sex specific
cut-off values, and sarcopenic obesity, which is defined as the combined presence of both
sarcopenia and obesity [4]. The metabolic information derived from this kind of individual
body composition analysis can identify frail patients (e.g., patients with sarcopenic obesity
who have a normal BMI with reduced muscle mass and severe obesity) [5].

Kidney transplant recipients aged 65 years and older with end-stage renal disease
benefit from being allocated a transplant kidney in the Eurotransplant Senior Program (ESP)
by having a better survival rate and quality of life compared with that from hemodialysis
treatment [6,7]. Despite the survival benefit, kidney transplant recipients still have a high
mortality rate compared with that of the general population [8]. Organ shortage and periop-
erative morbidity necessitate the careful workup of potential kidney transplant recipients
to ensure an optimal outcome. Aside from cardiovascular disease, arterial hypertension,
and diabetes mellitus, preoperative frailty has been shown to be associated with a higher
risk of death and delayed graft function [9,10]. Additionally, surgical complications and
delayed graft function are more common in obese patients [11,12].

Especially in older and diabetic patients, a computed tomography (CT) scan of the
abdomen and pelvis is routinely performed to detect iliac calcification as peripheral vascular
disease increases the risk of transplant ischemia [13]. In general, the information gained
from the CT is only used to plan optimal graft positioning [14]. However, these imaging
studies could easily be used for additional preoperative analysis of body composition as
well [15]. CT body composition parameters have been identified as outcome predictors in
many cardiovascular and oncological diseases. For example, body composition has been
reported to predict life-threatening progression of aortic enlargement in Marfan syndrome
or severe complications, prolonged hospitalization, and overall survival in esophageal
cancer [16,17]. Moreover, abdominal obesity has been found to predict coronary heart
disease, and the PMI seems to predict outcomes in patients undergoing transcatheter aortic
valve implantation [18,19].

The hypothesis of this study is that AI-based body composition parameters may
influence 1-year, 3-year and 5-year patient survival, 1-year, 3-year and 5-year censored
kidney transplant survival, and 1-year, 3-year and 5-year uncensored kidney transplant
survival in elderly kidney transplant recipients from the ESP. As initial evaluation of older
candidates for kidney transplant routinely includes CT examinations of the abdomen
and pelvis, we used the CT data for a retrospective AI-based analysis of individual body
compositions to identify possible imaging predictors and imaging risk factors for patient
and transplant survival.

2. Materials and Methods
2.1. Study Design

In this single-center study, we analyzed body composition in a retrospective dataset of
kidney transplant recipients from the ESP who had undergone a CT scan of the abdomen
and pelvis for initial evaluation before transplantation. The study was approved by the
institutional review board and performed in compliance with the Declaration of Helsinki.

2.2. Patient Population and Characteristics

Kidney transplant recipients from the ESP aged 65 years and older were included in
this study if they had undergone CT of the lower abdomen and pelvis for initial evaluation.
They were referred for CT from the Department of Surgery or the Department of Nephrol-
ogy. All patients included underwent solitary kidney transplantation at our university
transplant center between 2011 and 2016. Exclusion criteria were patients without CT
scans prior to surgery and aged <65 years. Additionally, patients were excluded if their CT
images did not include the third lumbar vertebra.
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2.3. Baseline Data

Two patients had to be excluded because the CT scan of their lower abdomen and
pelvis did not include the third lumbar vertebra. A total of 42 patients with a mean age of
69 ± 4 years at the time of transplantation (range: 65 to 80 years) were included in this study:
13 women and 29 men. The mean weight was 78 ± 14 kg, and mean height was 171 ± 8 cm.
BMI was calculated using the following formula: BMI = weight/height2 (kg/m2): mean BMI
was 27 ± 7.

Almost all patients received basiliximab for induction and Tac/MMF/MP for main-
tenance of immunosuppression. One patient received rATG for induction and another
patient received CyA/everolimus/MP for permanent immunosuppression. Further clinical
characteristics of kidney transplant recipients and donor organs are compiled in Table 1.

Table 1. Clinical characteristics of kidney transplant recipients. HLA = human leukocyte antigen.
IL-2 = interleukin 2. IS = immunosuppression. KDRI = kidney donor risk index. KDPI = kidney
donor profile index. PKD = polycystic kidney disease. * Median ± standard deviation.

Total (n = 42)

Recipient Characteristics

Recipient age, years * 69 ± 4

Renal disease, n (%)

Diabetic 10 (24%)
Hypertensive 4 (10%)
PKD 5 (12%)
Glomerular disease 9 (21%)
Others/Unknown 14 (33%)

Recipient, female sex, n (%) 17 (40%)

Deceased donation, n (%) 42 (100%)

Living donation, n (%) 0 (0%)

Cold ischemia time, minutes * 581 (241–1076)

Immunosuppression

Induction IS, n (%)
IL-2 receptor blockade 41 (98%)
Lymphocyte depletion 1 (2%)

Maintenance IS, n (%)
MMF/MPA 42 (100%)
Tacrolimus 41 (98%)
Ciclosporine 1 (2%)
Azathioprin 1 (2%)

Total HLA Mismatches * 3.6 (0–6)

Donor Characteristics

Donor age, years 69 ± 5
Donor, female sex, n (%) 31 (74%)
KDPI (%) 97 ± 3
KDRI 2 ± 0.4

2.4. Data Collection, Follow-Up, and Endpoints

All data were retrieved from the patient records and clinical database. Thirty-one kid-
ney transplant recipients attended aftercare at our university transplant center at 3-month
intervals, and 11 kidney transplant recipients were followed up by local nephrologists or
general practitioners. Follow-up rates at 1 year, 3 years, and 5 years after transplantation
were 100%. Endpoints were defined as 1-year, 3-year, and 5-year patient survival and
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1-year, 3-year, and 5-year censored transplant survival and uncensored (= not censored for
death) transplant survival.

2.5. Body Composition Analysis

Available CT datasets acquired at the Department of Radiology and at external loca-
tions were used for analysis of body composition. Image segmentation was performed with
an AI-based automated software tool using a convolutional neural network, U-net (Visage
version 7.1, Visage Imaging GmbH, Berlin, Germany). The network consists of nine blocks:
four down-sampling blocks, four up-sampling blocks, and one in between. The training
data consisted of 200 axial CT images of the L3 level, and augmentation was applied during
training to improve generalization of the network. Psoas muscle, skeletal muscle, visceral
adipose tissue, and subcutaneous adipose tissue were automatically separated and coded
with different colors. Automatic segmentation was checked by an experienced radiologist.
In few cases, AI-based image segmentation was manually corrected, for example, when
hypodense stool in the intestine was misinterpreted as body fat. The software automat-
ically calculated the area in square centimeters (cm2) and density in Hounsfield units
of each segmented tissue class. Areas of skeletal muscle, visceral adipose tissue (VAT),
and subcutaneous adipose tissue (SAT) at L3 were derived for body composition analysis.
The psoas muscle index (PMI) was calculated using the following formula: psoas muscle
area (cm2)/body surface area (m2). The skeletal muscle index (SMI) was calculated using
the following formula: skeletal muscle area (cm2)/body surface area (m2). Examples of
AI-based automated analysis of body composition are shown in Figure 1.
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Figure 1. Examples of AI-based analysis of body composition: (a) 65-year-old male kidney transplant
recipient with a BMI of 27.7, PMI of 9.8, and SMI of 67.6. (b) 65-year-old male kidney transplant
recipient with a BMI of 27.8, PMI of 3.9, and SMI of 44.4. Even though both patients are the same
age and have almost the same BMI, their body composition parameters are considerably different.
Each segmented tissue is coded with a different color: psoas muscle = purple, skeletal muscle (except
psoas muscle) = green, visceral fat = dark green, blue = subcutaneous fat. Tissue density and area
were automatically calculated using Visage version 7.1.

2.6. Induction and Maintenance Immunosuppression

The choice of induction therapy was based on immunologic risk. Kidney transplant
recipients with a low immunologic risk received an interleukin-2 receptor blockade with
basiliximab, and recipients with a high immunologic risk received lymphocyte-depleting
induction with rATG. Primary immunosuppression consisted of a triple-drug combination
of a calcineurin inhibitor (CNI), tacrolimus or cyclosporine, antimetabolite (mycophenolate
mofetil (MMF), mycophenolic acid (MPA) or azathioprine), and steroids. Steroid treatment
was tapered over 8 weeks to a dose of 4 mg methylprednisolone/day.
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2.7. Statistical Analysis

For analysis of 1-year, 3-year, and 5-year patient survival and kidney transplant
survival, multivariate Cox regression was performed, and p ≤ 0.05 was considered to
indicate a significant difference. Kaplan–Meier curves were plotted for 3-year and 5-year
uncensored kidney transplant survival and log-rank testing was performed. All data
analyses were performed using IBM SPSS Statistics version 27 (International Business
Machines Corporation, IBM, Armonk, NY, USA).

For each outcome endpoint, including 1-year, 3-year, and 5-year patient survival
and 1-year, 3-year, and 5-year censored transplant survival and 1-year, 3-year, and 5-year
uncensored transplant survival, the dependent variant was defined as death of the patient
or kidney transplant. First, BMI and the AI-derived body composition parameters PMI,
SMI, VAT, and SAT served as independent variants. Second, cut-offs for sarcopenia, defined
as SMI ≤ 38.5 cm2/m2 in women and SMI ≤ 52.4 cm2/m2 in men, and obesity (BMI ≥ 30),
were used as independent variates. Age as a possible confounder was excluded. Sex was
included by defining specific cut-offs for men and women [20].

3. Results
3.1. AI-Based Body Composition Parameters and Cut-Offs

All AI-based body composition parameters were derived at the third lumbar vertebra
level. The mean PMI was 5.4 ± 1.9 cm2/m2, and the mean SMI was 42.0 ± 7.6 cm2/m2.
The mean VAT was 203.0 ± 123.3 mm2, and SAT 204.7 ± 91.2 mm2. Thirteen patients (31%)
had sarcopenia, 11 patients (26%) had obesity, and 5 patients (12%) had sarcopenic obesity.
All results are compiled in Table 2.

Table 2. Patient body composition parameters: BMI = body mass index. PMI = psoas muscle index.
SMI = skeletal muscle index. VAT = visceral adipose tissue. SAT = subcutaneous adipose tissue.

Body Composition Parameter Value (± Standard Deviation)

BMI 27 ± 7

PMI (cm2/m2) 5.4 ± 1.9

SMI (cm2/m2) 42.0 ± 7.6

VAT (mm2) 203.0 ± 123.3

SAT (mm2) 204.7 ± 91.2

Sarcopenia 31%

Obesity 26%

Sarcopenic obesity 12%

3.2. Cox Regression Analysis with BMI and AI-Derived Body Composition Parameters as
Independent Variates

One-year, 3-year, and 5-year patient survival was not predicted by BMI or any AI-
derived body composition parameter including PMI, SMI, VAT and SAT. All results are
compiled in Table 3.

One-year censored kidney transplant survival was significantly predicted by a reduced
PMI (p = 0.03) and reduced SMI (p = 0.03); 3-year censored kidney transplant survival was
significantly predicted by a reduced SMI (p = 0.05); but 5-year censored kidney transplant
survival was not predicted by BMI or any AI-derived body composition parameter. All
results are compiled in Table 4.

One-year uncensored kidney transplant survival was significantly predicted by a
reduced PMI (p = 0.02) and reduced SMI (p = 0.01). In contrast, 3-year uncensored kidney
transplant survival was significantly predicted by increased VAT (p = 0.04), while 5-year
uncensored kidney transplant survival was not predicted by BMI or any AI-derived body
composition parameter. All results are compiled in Table 5.
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Table 3. Cox regression analysis of 1-year, 3-year and 5-year patient survival with the variates BMI
and AI-derived body composition parameters PMI, SMI, VAT and SAT. AI = artificial intelligence,
BMI = body mass index, CI = confidence interval, PMI = psoas muscle index, SMI = skeletal muscle
index, SAT = subcutaneous adipose tissue, VAT = visceral adipose tissue.

1-Year Patient Survival 3-Year Patient Survival 5-Year Patient Survival

Variate p-Value Odds Ratio (CI) p-Value Odds Ratio (CI) p-Value Odds Ratio (CI)

BMI 0.44 1.03 (0.95–1.12) 0.63 1.03 (0.92–1.14) 0.28 1.05 (0.96–1.15)

PMI 0.64 1.09 (0.76–1.57) 0.49 1.16 (0.76–1.75) 0.40 1.17 (0.81–1.67)

SMI 0.94 1.00 (0.91–1.11) 0.93 0.99 (0.89–1.11) 0.97 1.00 (0.91–1.11)

VAT 1.00 1.00 (0.99–1.01) 0.46 1.00 (0.99–1.01) 0.70 1.00 (0.99–1.01)

SAT 0.91 1.00 (0.99–1.01) 0.63 1.00 (0.99–1.01) 0.99 1.00 (0.99–1.01)

Table 4. Cox regression analysis of 1-year, 3-year and 5-year censored kidney transplant survival
with the variates BMI and AI-derived body composition parameters PMI, SMI, VAT, and SAT.
AI = artificial intelligence, BMI = body mass index, CI = confidence interval, PMI = psoas muscle
index, SMI = skeletal muscle index, SAT = subcutaneous adipose tissue, VAT = visceral adipose tissue.

1-Year Censored Kidney
Transplant Survival

3-Year Censored Kidney
Transplant Survival

5-Year Censored Kidney Transplant
Survival

Variate p-Value Odds Ratio (CI) p-Value Odds Ratio (CI) p-Value Odds Ratio (CI)

BMI 0.90 1.02 (0.79–1.31) 0.37 1.07 (0.93–1.23) 0.07 1.11 (0.99–1.26)

PMI 0.03 0.25 (0.07–0.89) 0.23 0.62 (0.35–1.29) 0.36 0.79 (0.47–1.31)

SMI 0.03 0.55 (0.35–0.75) 0.05 0.75 (0.50–1.00) 0.06 0.82 (0.65–1.00)

VAT 0.13 0.98 (0.96–1.01) 0.07 1.01 (1.00–1.02) 0.06 0.99 (0.98–1.00)

SAT 0.21 1.01 (0.99–1.03) 0.16 1.00 (1.00–1.01) 0.24 1.01 (1.00–1.01)

Table 5. Cox regression analysis of 1-year, 3-year and 5-year uncensored kidney transplant sur-
vival with the variates BMI and AI-derived body composition parameters PMI, SMI, VAT and SAT.
AI = artificial intelligence, BMI = body mass index, CI = confidence interval, PMI = psoas muscle
index, SMI = skeletal muscle index, SAT = subcutaneous adipose tissue, VAT = visceral adipose tissue.

1-Year Uncensored Kidney
Transplant Survival

3-Year Uncensored Kidney
Transplant Survival

5-Year Uncensored Kidney
Transplant Survival

Variate p-Value Odds Ratio (CI) p-Value Odds Ratio (CI) p-Value Odds Ratio (CI)

BMI 0.31 1.09 (0.79–1.31) 0.21 1.07 (0.96–1.19) 0.60 1.09 (1.00–1.18)

PMI 0.02 0.26 (0.08–0.84) 0.23 0.76 (0.49–1.19) 0.32 0.83 (0.58–1.20)

SMI 0.01 0.69 (0.46–0.92) 0.06 0.99 (0.98–1.00) 0.08 0.99 (0.99–1.00)

VAT 0.14 0.99 (0.98–1.00) 0.04 1.13 (0.99–1.29) 0.06 0.90 (0.80–1.00)

SAT 0.45 1.00 (0.99–1.02) 0.20 1.00 (1.00–1.01) 0.68 1.00 (0.99–1.01)

3.3. Cox Regression Analysis with Sarcopenia and Obesity as Cut-Off Independent Variates

Cut-off values for sarcopenia and obesity did not influence 1-year, 3-year or 5-year
patient survival. The results are compiled in Table 6.
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Table 6. Cox regression analysis of 1-year, 3-year and 5-year patient survival with cutoff values for
sarcopenia and obesity. CI = confidence interval.

1-Year Patient Survival 3-Year Patient Survival 5-Year Patient Survival

Variate p-Value Odds Ratio (CI) p-Value Odds Ratio (CI) p-Value Odds Ratio (CI)

Sarcopenia 0.10 1.14 (1.01–2.48) 0.76 1.82 (1.24–3.86) 0.68 1.79 (1.26–2.40)

Obesity 0.42 2.19 (0.33–14.7) 0.24 2.12 (0.61–7.39) 0.12 2.39 (0.79–7.23)

Cut-off values for sarcopenia and obesity did not influence 1-year, 3-year or 5-year
censored kidney transplant survival. The results are compiled in Table 7.

Table 7. Cox regression analysis of 1-year, 3-year and 5-year censored kidney transplant survival
with cutoff values for sarcopenia and obesity. CI = confidence interval.

1-Year Censored Kidney
Transplant Survival

3-Year Censored Kidney
Transplant Survival

5-Year Censored Kidney
Transplant Survival

Variate p-Value Odds Ratio (CI) p-Value Odds Ratio (CI) p-Value Odds Ratio (CI)

Sarcopenia 0.10 1.14 (1.01–2.42) 0.10 1.28 (1.06–2.29) 0.31 1.50 (1.13–2.90)

Obesity 0.39 2.31 (0.34–15.6) 0.23 2.53 (0.56–11.3) 0.08 3.31 (0.86–12.7)

Cut-off values for sarcopenia significantly predicted uncensored 1-year uncensored
kidney transplant survival (p = 0.05), and the values for obesity significantly predicted 3-year
and 5-year uncensored kidney transplant survival. The results are compiled in Table 8.

Table 8. Cox regression analysis of 1-year, 3-year and 5-year uncensored kidney survival with cutoff
values for sarcopenia and obesity. CI = confidence interval.

1-Year Uncensored Kidney
Transplant Survival

3-Year Uncensored Kidney
Transplant Survival

5-Year Uncensored Kidney
Transplant Survival

Variate p-Value Odds Ratio (CI) p-Value Odds Ratio (CI) p-Value Odds Ratio (CI)

Sarcopenia 0.05 1.19 (1.03–2.02) 0.23 1.51 (1.17–2.53) 0.28 1.60 (1.23–2.52)

Obesity 0.15 3.11 (0.67–14.3) 0.05 3.02 (1.01–9.04) 0.02 2.95 (1.15–7.55)

The influence of sarcopenia on 1-year uncensored kidney transplant survival and the
influence of obesity on 5-year uncensored kidney transplant survival are shown in Kaplan–
Meier curves (Figure 2). The log-rank showed the significant influence of sarcopenia and
obesity (p = 0.002 and p = 0.007, respectively).
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4. Discussion

In this retrospective study we evaluated the usefulness of artificial intelligence-based
body composition analysis for predicting kidney transplant survival and recipient survival
in the Eurotransplant Senior Program. Outcome endpoints were defined as 1-year, 3-year,
and 5-year for patients and transplants. Body composition parameters were tested as possi-
ble outcome predictors by analyzing overall patient and transplant survival over a follow-
up period of 5 years after kidney transplantation. For 1-year censored and uncensored
transplant survival, we identified lower a PMI and SMI as significant predictors of graft loss.
The 3-year uncensored kidney transplant survival was significantly influenced by higher
VAT, whereas 3-year censored kidney transplant survival was significantly influenced by
a lower SMI. Moreover, sarcopenia significantly predicted 1-year uncensored transplant
survival. Long-term 3-year and 5-year survival analysis identified obesity as a significant
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risk factor for uncensored transplant survival. In contrast, recipient survival was not
significantly influenced by the BMI or any of the AI-derived body composition parameters.

Preoperative assessment of frailty in candidates for kidney transplantation was im-
portant as the availability of organs is limited. The BMI is a commonly used indicator
of a patient’s fitness although it is an uncertain diagnostic index of obesity [21,22]. If a
discrepancy between BMI and obesity is suspected, for example, in patients with sarcope-
nia and a normal BMI, a more sophisticated assessment is required [23]. Analysis of CT
body composition at L3 was shown to allow objective measurement of a patient’s physical
fitness [24,25]. In our study, 31% of patients were sarcopenic, which was detected by CT
but not BMI. Interestingly, sarcopenia predicted transplant survival in the first year after
kidney transplant but not 3-year or 5-year survival. This may have been attributable to the
fact that sarcopenia is associated with postoperative complications, which may affect early
transplant survival [26]. Three to five years after kidney transplant, the patient’s fitness
may have recovered and no longer influenced the outcome [27].

In the past, obesity was considered a risk factor because obese kidney recipients had a
higher rate of graft loss and all-cause mortality. Since then, Nicoletto et al. have reported
the same graft and patient survival rates for obese and nonobese kidney recipients [28].
Tzvetanov et al. have shown that kidney transplantation is also possible in obese pa-
tients [29]. Our results demonstrated that the body composition parameters VAT and SAT,
both reflecting the amount of adipose tissue and the cut-off value for obesity, did not aid in
risk stratification for overall patient survival. However, VAT emerged as a significant risk
factor for 3-year uncensored kidney transplant survival. Consistent with our findings, a
recent study of Manabe et al. showed that the visceral fat area is significantly associated
with the progression of kidney disease [30]. Moreover, obesity significantly influenced
3-year and 5-year uncensored kidney transplant survival.

The results of our study matched our clinical experience: frailty—represented by the
AI-derived body composition parameters SMI/PMI and sarcopenia cut-off value—is an
important perioperative risk factor, whereas overweight—represented by the AI-derived
body composition parameter VAT and obesity cut-off value—becomes much more relevant
for long-term outcomes as it is associated with many cardiovascular diseases. We attributed
the differences between censored and uncensored kidney transplant survival to the fact
that the latter includes the patient’s death, which may have been influenced by frailty
and overweight.

Unlike transplant survival, short- and long-term patient survival was not predicted by
any AI-derived body composition parameter or BMI, nor did these parameters aid in risk
stratification for overall patient survival. A possible explanation might be that especially older
kidney transplant recipients suffered from comorbidities including coronary artery disease,
diabetes mellitus, and hypertension, all of which are risk factors for mortality [31,32].

Body composition analysis has been found to be a useful indicator for prognosis and
risk stratification, particularly in patients with cardiovascular and malignant diseases [5,33].
Both sarcopenia and sarcopenic obesity are risk factors in cardiovascular disease but also
associated with unfavorable outcomes in malignancies and with prolonged postopera-
tive recovery [34–37]. CT allows for reliable analysis of body composition from a single
axial image acquired at the L3 level [15,38]. Most software tools for non-AI-based body
composition analysis, such as SliceOmatic or Horos, use pixel thresholding with region
growing [39]. However, these manual or semiautomatic segmentation procedures for CT
datasets are time consuming and have therefore been limited to smaller patient populations.
The postprocessing time of these datasets is dramatically decreased when AI-based body
composition analysis is used [40]. In our study, we used an established, fully automatic
AI-based software tool that provided valuable metabolic information without additional
radiation exposure. In this study, we described the influence of AI-based analysis of body
composition parameters on short-term and long-term recipient and transplant survival in
older kidney transplant recipients for the first time.
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Our study was limited by the use of a retrospective dataset and a relatively small
study population. Elderly kidney transplant recipients suffer especially from multiple
comorbidities, which may have influenced both graft survival and patient survival as well.

5. Conclusions

The survival of kidney recipients cannot be predicted by AI-derived body composition
parameters. However, AI-based body composition analysis is useful for predicting short-
and long-term kidney transplant survival: the body composition parameters PMI and
SMI, both of which represent muscle tissue, and sarcopenia predict 1-year transplant
survival, whereas obesity and VAT, which represents fat tissue, predict 3-year and 5-year
kidney transplant survival. Therefore, AI-based analysis of body composition may aid in
identifying patients at risk who require special care and individualized decision making to
achieve optimal outcomes.
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