4,053 research outputs found

    PORTABLE MULTI-CAMERA SYSTEM: FROM FAST TUNNEL MAPPING TO SEMI-AUTOMATIC SPACE DECOMPOSITION AND CROSS-SECTION EXTRACTION

    Get PDF
    The paper outlines the first steps of a research project focused on the digitalization of underground tunnels for the mining industry. The aim is to solve the problem of rapidly, semi-automatically, efficiently, and reliably digitizing complex and meandering tunnels. A handheld multi-camera photogrammetric tool is used for the survey phase, which allows for the rapid acquisition of the image dataset needed to produce the 3D data. Moreover, since often, automatic, and fast acquisitions are not supported by easy-to-use tools to access and use the data at an operational level, a second aim of the research is to define a method able to arrange and organise the gathered data so that it would be easily accessible. The proposed approach is to compute the 3D skeleton of the surveyed environment by employing tools developed for the analysis of vascular networks in medical imagery. From the computed skeletonization of the underground tunnels, a method is proposed to automatically extrapolate valuable information such as cross-sections, decomposed portions of the tunnel, and the referenced images from the photogrammetric survey. The long-term research goal is to create an effective workflow, both at the hardware and software level, that can reduce computation times, process large amounts of data, and reduce dependency on high levels of experience

    BIM SYSTEM FOR THE CONSERVATION AND PRESERVATION OF THE MOSAICS OF SAN MARCO IN VENICE

    Get PDF
    The Basilica of San Marco in Venice is a well-known masterpiece of World Heritage. It is a real multi-faceted architecture. The management of the church and its construction site is very complicated, and requires an efficient system to collect and manage different kinds of data. The BIM approach appeared to be the most suitable to collect multi-source data, to monitor activities and guarantee the well-timed operations inside the church. The purpose of this research was to build a BIM of the Basilica, considering all aspects that characterize it and that require particular care.Many problems affected the phase of the acquisition of data, and forced the team to establish a clear working pipeline that allowed the survey simultaneously, hand in hand, with all the usual activities of the church. The fundamental principle for the organization of the whole work was the subdivision of the entire complex in smaller parts, which could be managed independently, both in the acquisition and the modelling stage. This subdivision also reflects the method used for the photogrammetric acquisition. The complexity of some elements, as capitals and statues, was acquired with different Level of Detail (LoD) using various photogrammetric acquisitions: from the most general ones to describe the space, to the most detailed one 1:1 scale renderings. In this way, different LoD point clouds correspond to different areas or details.As evident, this pipeline allows to work in a more efficient way during the survey stage, but it involves more difficulties in the modelling stage. Because of the complexity of the church and the presence of sculptural elements represented by a mesh, from the beginning the problem of the amount of data was evident: it is nonsense to manage all models in a single file.The challenging aspect of the research job was the precise requirement of the Procuratoria di San Marco: to obtain the 1:1 representation of all the mosaics of the Basilica. This requirement significantly increased the effort in the acquisition stage, because it was necessary to reach a submillimetre resolution in the photographic images sufficient to distinguish perfectly each single tessera, also in the highest domes (28 meters). Furthermore, it introduced a new problem about the management of the gigapixel - orthophotos.The BIM approach presented in this paper tries to offer a solution to all these problems. The BIM application is based not on commercial software, but on a self-implemented system, which was previously tested on the Main Spire of Milano Cathedral. The multi-scale and multi-area approach have also been maintained in the BIM construction phase.In the case of Basilica di San Marco, the most important requirement was the management of the orthophotos of each single element. It was necessary to give the user the possibility to recover, for each item, not only the geometric model, but also the raster representation -orthophoto- of its surface: in order to do it, the BIM model acts as a three-dimensional catalogue

    Preliminary survey of historic buildings with wearable mobile mapping systems and uav photogrammetry

    Get PDF
    In cultural heritage, three-dimensional documentation of historic buildings is fundamental for conservation and valorisation projects. In recent years, the consolidated tools and methods: Terrestrial Laser Scanning (TLS) and close-range photogrammetry, have been joined by portable Mobile Mapping Systems (MMSs), which can offer significant advantages in terms of speed of survey operations at the price of reduced accuracy. The reduction of survey times and, therefore, costs makes the application of MMS techniques ideal for the preliminary stages of analysis of historical artifacts, when a rapid survey is indispensable for estimating the costs of conservation interventions. In this paper, we present a methodology for the expeditious survey of historic buildings and the surrounding urban fabric that is based on the use of an MMS and an Unmanned Aerial Vehicle (UAV). The MMS is the Gexcel Heron MS Twin color. It was used to survey two architecture of interest and the urban context surrounding them from the ground level. The UAV is the DJI Mini 2, used to integrate the terrestrial survey by acquiring the buildings' roofs. The case study presented in the paper is the survey of San Clemente and San Zeno al Foro churches, two historic churches in the city centre of Brescia (Italy). The result are a complete point cloud of the two buildings and a metric virtual tour of all spaces. These results were made available to the architects through the Cintoo web platform to plan future activities

    Study of rheological behaviour of polymer melt in micro injection moulding with a miniaturized parallel plate rheometer

    Get PDF
    Abstract The study of the rheological behaviour of the polymer in micro cavities is one of the aspects related to the technology of micro injection moulding (ÎĽIM) still substantially unresolved. Even today, there are no databases on the rheological characteristics of the material specific for the ÎĽIM, which, therefore, takes into account a number of important differences compared to the conventional injection moulding. In this paper, the study of the rheological behaviour of the polymer melt in a thin plate cavity with variable thickness has been conducted. The use of a micro injection moulding machine, on which the prototype of a sensorized mould with pressure and temperature sensor has been mounted, allowed the rheological study of the material under high shear rate conditions. After preliminary tests on different thicknesses, it has been studied the viscosity of polymer melt for 400 ÎĽm thickness. The viscosity reduction observed meets the characteristics of a pseudoplastic fluid subject to shear thinning and the wall slip seems to play an important role in the apparent reduction of viscosity. The results suggest to increase injection speed, and consequently injection pressures, so that the reduced viscosity can help melt flow to overcome the extreme conditions due to the aspect ratio and to obtain greater efficiency from the filling phase against the high cooling rate typical of micro injection moulding.

    SURVEY OF HISTORICAL GARDENS: MULTI-CAMERA PHOTOGRAMMETRY VS MOBILE LASER SCANNING

    Get PDF
    This paper presents an investigation into the characterization of historical gardens by comparing two 3D survey methodologies. In this context, approaches employing terrestrial laser scanning are considered the most accurate, while Mobile Mapping Systems (MMSs) are considered promising due to their extreme productivity. Less common is the use of close-range photogrammetry. This paper compares two approaches based on the use of a wearable MMS and the use of an in-house built photogrammetric multi-camera prototype. The comparison aims to assess the applicability of the two techniques in this field, evaluating their advantages and disadvantages in surveying a historical garden and extracting information for tree inventory, such as the DBH (Diameter at Breast Height) and canopy footprint. We compared the practicality of surveying and processing operations; and the quality and characteristics of the point clouds obtained. Both systems produced a dense representation of the terrain. The multi-camera survey resulted to be more defined due to the lower noise of the point cloud but incomplete in the definition of tree canopies. DBH of tree trunks can be extracted with both systems, except for thinner and finer diameter trunks detected by the MMS approach but not always by the multi-camera. The MMS approach proved more effective thanks to a shorter survey time required to cover an equal area and the fact that the MMS survey alone is sufficient for the geometric description of trees. In contrast, the multi-camera approach cannot avoid integration with an aerial survey for canopy reconstructio

    SURVEY OF HISTORICAL GARDENS: MULTI-CAMERA PHOTOGRAMMETRY VS MOBILE LASER SCANNING

    Get PDF
    This paper presents an investigation into the characterization of historical gardens by comparing two 3D survey methodologies. In this context, approaches employing terrestrial laser scanning are considered the most accurate, while Mobile Mapping Systems (MMSs) are considered promising due to their extreme productivity. Less common is the use of close-range photogrammetry. This paper compares two approaches based on the use of a wearable MMS and the use of an in-house built photogrammetric multi-camera prototype. The comparison aims to assess the applicability of the two techniques in this field, evaluating their advantages and disadvantages in surveying a historical garden and extracting information for tree inventory, such as the DBH (Diameter at Breast Height) and canopy footprint. We compared the practicality of surveying and processing operations; and the quality and characteristics of the point clouds obtained. Both systems produced a dense representation of the terrain. The multi-camera survey resulted to be more defined due to the lower noise of the point cloud but incomplete in the definition of tree canopies. DBH of tree trunks can be extracted with both systems, except for thinner and finer diameter trunks detected by the MMS approach but not always by the multi-camera. The MMS approach proved more effective thanks to a shorter survey time required to cover an equal area and the fact that the MMS survey alone is sufficient for the geometric description of trees. In contrast, the multi-camera approach cannot avoid integration with an aerial survey for canopy reconstruction

    TARGETLESS REGISTRATION METHODS BETWEEN UAV LIDAR AND WEARABLE MMS POINT CLOUDS

    Get PDF
    Fixed-wing Unmanned Aerial Vehicles (UAV) and wearable or portable Mobile Mapping Systems (MMS) are two widely used platforms for point cloud acquisition with Light Detection And Ranging (LiDAR) sensors. The two platforms acquire from distant viewpoints and produce complementary point clouds, one describing predominantly horizontal surfaces and the other primarily vertical. Thus, the registration of the two data is not straightforward. This paper presents a test of targetless registration between a UAV LiDAR point cloud and terrestrial MMS surveys. The case study is a vegetated hilly landscape characterized by the presence of a structure of interest; the UAV acquisition allows the entire area to be acquired from above, while the terrestrial MMS acquisitions will enable the construction of interest to be detailed. The paper describes the survey phase with both techniques. It focuses on processing and registration strategies to fuse the two data together. Our approach is based on the ICP (Iterative Closest Point) method by exploiting the data processing algorithms available in the Heron Desktop post-processing software for handling data acquired with the Heron Backpack MMS instrument. Two co-registration methods are compared. Both ways use the UAV point cloud as a reference and derive the registration of the terrestrial MMS data by finding ICP matches between the ground acquisition and the reference cloud exploiting only a few areas of overlap. The two methods are detailed in the paper, and both allow us to complete the co-registration task

    First measurement of the polarization observable E in the (p)over-right-arrow((gamma)over-right-arrow, pi(+))n reaction up to 2.25 GeV

    Get PDF
    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction (p) over right arrow((gamma) over right arrow, pi( + ))n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Jfilich-Bonn, and SAID groups. (C) 2015 The Authors. Published by Elsevier B.V

    Assessing the Relationships between Interdigital Geometry Quality and Inkjet Printing Parameters

    Get PDF
    Drop on demand (DoD) inkjet printing is a high precision, non-contact, and maskless additive manufacturing technique employed in producing high-precision micrometer-scaled geometries allowing free design manufacturing for flexible devices and printed electronics. A lot of studies exist regarding the ink droplet delivery from the nozzle to the substrate and the jet fluid dynamics, but the literature lacks systematic approaches dealing with the relationship between process parameters and geometrical outcome. This study investigates the influence of the main printing parameters (namely, the spacing between subsequent drops deposited on the substrate, the printing speed, and the nozzle temperature) on the accuracy of a representative geometry consisting of two interdigitated comb-shape electrodes. The study objective was achieved thanks to a proper experimental campaign developed according to Design of Experiments (DoE) methodology. The printing process performance was evaluated by suitable geometrical quantities extracted from the acquired images of the printed samples using a MATLAB algorithm. A drop spacing of 140 µm and 170 µm on the two main directions of the printing plane, with a nozzle temperature of 35◦C, resulted as the most appropriate parameter combination for printing the target geometry. No significant influence of the printing speed on the process outcomes was found, thus choosing the highest speed value within the investigated range can increase productivity

    Investigation of top mass measurements with the ATLAS detector at LHC

    Full text link
    Several methods for the determination of the mass of the top quark with the ATLAS detector at the LHC are presented. All dominant decay channels of the top quark can be explored. The measurements are in most cases dominated by systematic uncertainties. New methods have been developed to control those related to the detector. The results indicate that a total error on the top mass at the level of 1 GeV should be achievable.Comment: 47 pages, 40 figure
    • …
    corecore