190 research outputs found
Assessing the Effectiveness of U.S. Financial Regulations: A Comparative Analysis with E.U. Responses
This paper assesses the effectiveness of US financial regulation in carrying out its intended purpose, namely, to adequately protect investors from industry abuse, insider advantages, and fraud. Reviewing recent financial crises, the role of the SEC, high profile Supreme Court cases, and legislation, such findings call into question the legitimacy of the financial system as a whole and is worrying due to Americans’ sheer reliance on banks and securities markets. Furthermore, this paper then compares the U.S. regulatory response with that of the E.U. as a result of the Global Financial Crisis and found that E.U. regulations are more clear, more potent, and more effective in handling and preventing financial crises. This paper uses statistical data, legislative analysis, and testimonial evidence to conclude that there are severe ways in which the US regulatory regime is lacking. Particularly, through vague laws that do not take proper measures to adequately protect against a future crisis, along with the evaluation of the capacity of the SEC to enforce the financial laws in question, US financial regulation does not effectively carry out its intended purpose
Induction of antigen-specific tolerance through hematopoietic stem cell-mediated gene therapy: the future for therapy of autoimmune disease?
Based on the principle that immune ablation followed by HSC-mediated recovery purges disease-causing leukocytes to interrupt autoimmune disease progression, hematopoietic stem cell transplantation (HSCT) has been increasingly used as a treatment for severe autoimmune diseases. Despite clinically-relevant outcomes, HSCT is associated with serious iatrogenic risks and is suitable only for the most serious and intractable diseases. A further limitation of autologous HSCT is that relapse rates can be high, suggesting disease-causing leukocytes are incompletely purged or the environmental and genetic determinants that drive disease remain active. Incorporation of antigen-specific tolerance approaches that synergise with autologous HSCT could reduce or prevent relapse. Further, by reducing the requirement for highly toxic immune-ablation and instead relying on antigen-specific tolerance, the clinical utility of HSCT could be significantly diversified. Substantial progress has been made exploring HSCT-mediated induction of antigen-specific tolerance in animal models but studies have focussed on primarily on prevention of autoimmune diseases. However, as diagnosis of autoimmune disease is often not made until autoimmune disease is well developed and populations of autoantigen-specific pathogenic effector and memory T cells have become well established, immunotherapies must be developed to address effector and memory T-cell responses which have traditionally been considered the key impediment to immunotherapy. Here, focusing on T-cell mediated autoimmune diseases we review progress made in antigen-specific immunotherapy using HSCT-mediated approaches, induction of tolerance in effector and memory T cells and the challenges for progression and clinical application of antigen-specific ‘tolerogenic’ HSCT therapy
Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation
In 1997, the first consensus guidelines for haematopoietic SCT (HSCT) in autoimmune diseases (ADs) were published, while an international coordinated clinical programme was launched. These guidelines provided broad principles for the field over the following decade and were accompanied by comprehensive data collection in the European Group for Blood and Marrow Transplantation (EBMT) AD Registry. Subsequently, retrospective analyses and prospective phase I/II studies generated evidence to support the feasibility, safety and efficacy of HSCT in several types of severe, treatment-resistant ADs, which became the basis for larger-scale phase II and III studies. In parallel, there has also been an era of immense progress in biological therapy in ADs. The aim of this document is to provide revised and updated guidelines for both the current application and future development of HSCT in ADs in relation to the benefits, risks and health economic considerations of other modern treatments. Patient safety considerations are central to guidance on patient selection and HSCT procedural aspects within appropriately experienced and Joint Accreditation Committee of International Society for Cellular Therapy and EBMT accredited centres. A need for prospective interventional and non-interventional studies, where feasible, along with systematic data reporting, in accordance with EBMT policies and procedures, is emphasized
Intestinal Damage Determines the Inflammatory Response and Early Complications in Patients Receiving Conditioning for a Stem Cell Transplantation
Contains fulltext :
87954.pdf (publisher's version ) (Open Access)BACKGROUND: Stem cell transplantation (SCT) is still complicated by the occurrence of fever and inflammatory complications attributed to neutropenia and subsequent infectious complications. The role of mucosal barrier injury (MBI) of the intestinal tract therein has received little attention. METHODS: We performed a retrospective analysis in 163 SCT recipients of which data had been collected prospectively on intestinal damage (citrulline), inflammation (C-reactive protein), and neutrophil count. Six different conditioning regimens were studied; 5 myeloablative (MA) and 1 non-myeloablative (NMA). Linear mixed model multivariate and AUC analyses were used to define the role of intestinal damage in post-SCT inflammation. We also studied the relationship between the degree of intestinal damage and the occurrence of early post-SCT complications. RESULTS: In the 5 MA regimen there was a striking pattern of inflammatory response that coincided with the occurrence of severe intestinal damage. This contrasted with a modest inflammatory response seen in the NMA regimen in which intestinal damage was limited. With linear mixed model analysis the degree of intestinal damage was shown the most important determinant of the inflammatory response, and both neutropenia and bacteremia had only a minor impact. AUC analysis revealed a strong correlation between citrulline and CRP (Pearson correlation r = 0.96). Intestinal damage was associated with the occurrence of bacteremia and acute lung injury, and influenced the kinetics of acute graft-versus-host disease. CONCLUSION: The degree of intestinal damage after myeloablative conditioning appeared to be the most important determined the inflammatory response following SCT, and was associated with inflammatory complications. Studies should explore ways to ameliorate cytotoxic therapy-induced intestinal damage in order to reduce complications associated with myeloablative conditioning therapy
MR imaging of therapy-induced changes of bone marrow
MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment
The Expression of VEGF-A Is Down Regulated in Peripheral Blood Mononuclear Cells of Patients with Secondary Progressive Multiple Sclerosis
BACKGROUND: Most patients with relapsing-remitting multiple sclerosis (RRMS) eventually enter a secondary progressive (SPMS) phase, characterized by increasing neurological disability. The mechanisms underlying transition to SPMS are unknown and effective treatments and biomarkers are lacking. Vascular endothelial growth factor-A (VEGF-A) is an angiogenic factor with neuroprotective effects that has been associated with neurodegenerative diseases. SPMS has a prominent neurodegenerative facet and we investigated a possible role for VEGF-A during transition from RRMS to SPMS. METHODOLOGY/PRINCIPAL FINDINGS: VEGF-A mRNA expression in peripheral blood mononuclear (PBMC) and cerebrospinal fluid (CSF) cells from RRMS (n = 128), SPMS (n = 55) and controls (n = 116) were analyzed using real time PCR. We demonstrate reduced expression of VEGF-A mRNA in MS CSF cells compared to controls (p<0.001) irrespective of disease course and expression levels are restored by natalizumab treatment(p<0.001). VEGF-A was primarily expressed in monocytes and our CSF findings in part may be explained by effects on relative monocyte proportions. However, VEGF-A mRNA expression was also down regulated in the peripheral compartment of SPMS (p<0.001), despite unchanged monocyte counts, demonstrating a particular phenotype differentiating SPMS from RRMS and controls. A possible association of allelic variability in the VEGF-A gene to risk of MS was also studied by genotyping for six single nucleotide polymorphisms (SNPs) in MS (n = 1114) and controls (n = 1234), which, however, did not demonstrate any significant association between VEGF-A alleles and risk of MS. CONCLUSIONS/SIGNIFICANCE: Expression of VEGF-A in CSF cells is reduced in MS patients compared to controls irrespective of disease course. In addition, SPMS patients display reduced VEGF-A mRNA expression in PBMC, which distinguish them from RRMS and controls. This indicates a possible role for VEGF-A in the mechanisms regulating transition to SPMS. Decreased levels of PBMC VEGF-A mRNA expression should be further evaluated as a biomarker for SPMS
Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis
Autologous haematopoietic stem cell transplantation (AHSCT) is a multistep procedure that enables destruction of the immune system and its reconstitution from haematopoietic stem cells. Originally developed for the treatment of haematological malignancies, the procedure has been adapted for the treatment of severe immune-mediated disorders. Results from ~20 years of research make a compelling case for selective use of AHSCT in patients with highly active multiple sclerosis (MS), and for controlled trials. Immunological studies support the notion that AHSCT causes qualitative immune resetting, and have provided insight into the mechanisms that might underlie the powerful treatment effects that last well beyond recovery of immune cell numbers. Indeed, studies have demonstrated that AHSCT can entirely suppress MS disease activity for 4–5 years in 70–80% of patients, a rate that is higher than those achieved with any other therapies for MS. Treatment-related mortality, which was 3.6% in studies before 2005, has decreased to 0.3% in studies since 2005. Current evidence indicates that the patients who are most likely to benefit from and tolerate AHSCT are young, ambulatory and have inflammatory MS activity. Clinical trials are required to rigorously test the efficacy, safety and cost-effectiveness of AHSCT against highly active MS drugs
- …