37 research outputs found

    Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study

    Get PDF
    107noNonalcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of metabolic syndrome and may evolve into hepatocellular carcinoma (HCC). Only scanty clinical information is available on HCC in NAFLD. The aim of this multicenter observational prospective study was to assess the clinical features of patients with NAFLD-related HCC (NAFLD-HCC) and to compare them to those of hepatitis C virus (HCV)-related HCC. A total of 756 patients with either NAFLD (145) or HCV-related chronic liver disease (611) were enrolled in secondary care Italian centers. Survival was modeled according to clinical parameters, lead-time bias, and propensity analysis. Compared to HCV, HCC in NAFLD patients had a larger volume, showed more often an infiltrative pattern, and was detected outside specific surveillance. Cirrhosis was present in only about 50% of NAFLD-HCC patients, in contrast to the near totality of HCV-HCC. Regardless of tumor stage, survival was significantly shorter (P = 0.017) in patients with NAFLD-HCC, 25.5 months (95% confidence interval 21.9-29.1), than in those with HCV-HCC, 33.7 months (95% confidence interval 31.9-35.4). To eliminate possible confounders, a propensity score analysis was performed, which showed no more significant difference between the two groups. Additionally, analysis of patients within Milan criteria submitted to curative treatments did not show any difference in survival between NAFLD-HCC and HCV-HCC (respectively, 38.6 versus 41.0 months, P = nonsignificant) Conclusions: NAFLD-HCC is more often detected at a later tumor stage and could arise also in the absence of cirrhosis, but after patient matching, it has a similar survival rate compared to HCV infection; a future challenge will be to identify patients with NAFLD who require more stringent surveillance in order to offer the most timely and effective treatment. (Hepatology 2016;63:827-838)openopenPiscaglia F.; Svegliati-Baroni G.; Barchetti A.; Pecorelli A.; Marinelli S.; Tiribelli C.; Bellentani S.; Bernardi M.; Biselli M.; Caraceni P.; Domenicali M.; Garuti F.; Gramenzi A.; Lenzi B.; Magalotti D.; Cescon M.; Ravaioli M.; Del Poggio P.; Olmi S.; Rapaccini G.L.; Balsamo C.; Di Nolfo M.A.; Vavassori E.; Alberti A.; Benvegnau L.; Gatta A.; Giacomin A.; Vanin V.; Pozzan C.; Maddalo G.; Giampalma E.; Cappelli A.; Golfieri R.; Mosconi C.; Renzulli M.; Roselli P.; Dell'isola S.; Ialungo A.M.; Risso D.; Marenco S.; Sammito G.; Bruzzone L.; Bosco G.; Grieco A.; Pompili M.; Rinninella E.; Siciliano M.; Chiaramonte M.; Guarino M.; Camma C.; Maida M.; Costantino A.; Barcellona M.R.; Schiada L.; Gemini S.; Lanzi A.; Stefanini G.F.; Dall'aglio A.C.; Cappa F.M.; Suzzi A.; Mussetto A.; Treossi O.; Missale G.; Porro E.; Mismas V.; Vivaldi C.; Bolondi L.; Zoli M.; Granito A.; Malagotti D.; Tovoli F.; Trevisani F.; Venerandi L.; Brandi G.; Cucchetti A.; Bugianesi E.; Vanni E.; Mezzabotta L.; Cabibbo G.; Petta S.; Fracanzani A.; Fargion S.; Marra F.; Fani B.; Biasini E.; Sacco R.; Morisco F.; Caporaso N.; Colombo M.; D'ambrosio R.; Croce L.S.; Patti R.; Giannini E.G.; Loria P.; Lonardo A.; Baldelli E.; Miele L.; Farinati F.; Borzio M.; Dionigi E.; Soardo G.; Caturelli E.; Ciccarese F.; Virdone R.; Affronti A.; Foschi F.G.; Borzio F.Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S.; Bernardi, M.; Biselli, M.; Caraceni, P.; Domenicali, M.; Garuti, F.; Gramenzi, A.; Lenzi, B.; Magalotti, D.; Cescon, M.; Ravaioli, M.; Del Poggio, P.; Olmi, S.; Rapaccini, G. L.; Balsamo, C.; Di Nolfo, M. A.; Vavassori, E.; Alberti, A.; Benvegnau, L.; Gatta, A.; Giacomin, A.; Vanin, V.; Pozzan, C.; Maddalo, G.; Giampalma, E.; Cappelli, A.; Golfieri, R.; Mosconi, C.; Renzulli, M.; Roselli, P.; Dell'Isola, S.; Ialungo, A. M.; Risso, D.; Marenco, S.; Sammito, G.; Bruzzone, L.; Bosco, G.; Grieco, A.; Pompili, M.; Rinninella, E.; Siciliano, M.; Chiaramonte, M.; Guarino, M.; Camma, C.; Maida, M.; Costantino, A.; Barcellona, M. R.; Schiada, L.; Gemini, S.; Lanzi, A.; Stefanini, G. F.; Dall'Aglio, A. C.; Cappa, F. M.; Suzzi, A.; Mussetto, A.; Treossi, O.; Missale, G.; Porro, E.; Mismas, V.; Vivaldi, C.; Bolondi, L.; Zoli, M.; Granito, A.; Malagotti, D.; Tovoli, F.; Trevisani, F.; Venerandi, L.; Brandi, G.; Cucchetti, A.; Bugianesi, E.; Vanni, E.; Mezzabotta, L.; Cabibbo, G.; Petta, S.; Fracanzani, A.; Fargion, S.; Marra, F.; Fani, B.; Biasini, E.; Sacco, R.; Morisco, F.; Caporaso, N.; Colombo, M.; D'Ambrosio, R.; Croce, L. S.; Patti, R.; Giannini, E. G.; Loria, P.; Lonardo, A.; Baldelli, E.; Miele, L.; Farinati, F.; Borzio, M.; Dionigi, E.; Soardo, G.; Caturelli, E.; Ciccarese, F.; Virdone, R.; Affronti, A.; Foschi, F. G.; Borzio, F

    Influence of amyloglucosidase in bread crust properties

    Get PDF
    Enzymes are used in baking as a useful tool for improving the processing behavior or properties of baked products. A number of enzymes have been proposed for improving specific volume, imparting softness, or extend the shelf life of breads, but scarce studies have been focused on bread crust. The aim of this study was to determine the use of amyloglucosidase for modulating the properties of the bread crust and increase its crispness. Increasing levels of enzyme were applied onto the surface of two different partially bake breads (thin and thick crust bread). Amyloglucosidase treatment affected significantly (P<0.05) the color of the crust and decreased the moisture content and water activity of the crusts. Mechanical properties were modified by amyloglucosidase, namely increasing levels of enzyme promoted a decrease in the force (Fm) required for crust rupture and an increase in the number of fracture events (Nwr) related to crispy products. Crust microstructure analysis confirmed that enzymatic treatment caused changes in the bread crust structure, leading to a disruption of the structure, by removing the starchy layer that covered the granules and increasing the number of voids, which agree with the texture fragility.Authors acknowledge the financial support of Spanish Ministry of Economy and Sustainability (Project AGL2011-23802), the European Regional Development Fund (FEDER), Generalitat Valenciana (Project Prometeo 2012/064) and the Consejo Superior de Investigaciones Cientificas (CSIC). R. Altamirano-Fortoul would like to thank her grant to CSIC. The authors also thank Forns Valencians S. A. (Spain) for supplying commercial frozen partially baked breads.Altamirano Fortoul, RDC.; Hernando Hernando, MI.; Molina Rosell, MC. (2014). Influence of amyloglucosidase in bread crust properties. Food and Bioprocess Technology. 7(4):1037-1046. https://doi.org/10.1007/s11947-013-1084-xS1037104674Altamirano-Fortoul R, Hernando I & Rosell CM (2013) Texture of bread crust: puncturing settings effect and its relationship to microstructure. Journal of Texture Studies. doi: 10.1111/j.1745-4603.2012.00368.x .Altamirano-Fortoul, R., Le Bail, A., Chevallier, S., & Rosell, C. M. (2012). Effect of the amount of steam during baking on bread crust features and water diffusion. Journal of Food Engineering, 108, 128–134.Altamirano-Fortoul R & Rosell CM (2010) Alternatives for extending crispiness of crusty breads. In Proceedings of International Conference on Food Innovation, FoodInnova, 25–29 October 2010, Valencia, Spain. ISBN978-84-693-5011-.9.Arimi, J. M., Duggan, E., O’sullivan, M., Lyng, J. G., & O’riordan, E. D. (2010). Effect of water activity on the crispiness of a biscuit (crackerbread): mechanical and acoustic evaluation. Food Research International, 43, 1650–1655.Castro-Prada, E. M., Primo-Martin, C., Meinders, M. B. J., Hamer, R. J., & Van Vliet, T. (2009). Relationship between water activity, deformation speed, and crispness characterization. Journal of Texture Studies, 40, 127–156.Esveld, D. C., Van Der Sman, R. G. M., Van Dalen, G., Van Duynhoven, J. P. M., & Meinders, M. B. J. (2012). Effect of morphology on water sorption in cellular solid foods. Part I: Pore Scale Network Model. Journal of Food Engineering, 109, 301–310.Goedeken, D. L., & Tong, C. H. (1993). Permeability measurements of porous food materials. Journal of Food Science, 58, 1329–1331.Gondek, E., Lewicki, P. P., & Ranachowski, Z. (2006). Influence of water activity on the acoustic properties of breakfast cereals. Journal of Texture Studies, 37, 497–515.Guerrieri, N., Eynard, L., Lavelli, V., & Cerletti, P. (1997). Interactions of protein and starch studied through amyloglucosidase action. Cereal Chemistry, 74, 846–850.ICC. (1994). Standard methods of the International Association for Cereal Science and Technology. Vienna: Austria.Heenan, S. P., Dufour, J. P., Hamid, N., Harvey, W., & Delahunty, C. M. (2008). The sensory quality of fresh bread: descriptive attributes and consumer perceptions. Food Research International, 41, 989–997.Heiniö, R. L., Nordlund, E., Poutanen, K., & Buchert, J. (2012). Use of enzymes to elucidate the factors contributing to bitterness in rye flavor. Food Research International, 45, 31–38.Hug-Iten, S., Escher, F., & Conde-Petit, B. (2003). Staling of bread: role of amylose and amylopectin and influence of starch-degrading enzymes. Cereal Chemistry., 80(6), 654–661.Jakubczyk, E., Marzec, A., & Lewicki, P. P. (2008). Relationship between water activity of crisp bread and its mechanical properties and structure. Polish Journal of Food and Nutrition Sciences, 58(1), 45–51.Luyten, A., Pluter, J. J., & Van Vliet, T. (2004). Crispy/crunchy crusts of cellular solid foods: a literature review with discussion. Journal of Texture Studies, 35, 445–492.Potter, N. N., & Hotchkiss, J. H. (1998). Food dehydration and concentration. In N. N. Potter & J. H. Hotchkiss (Eds.), Food Science (5th ed.). New York: Aspen Publishers.Primo-Martin, C., Van de Pijpekamp, A., Van Vliet, T., Jongh, H. H. J., Plijter, J. J., & Hamer, R. J. (2006). The role of the gluten network in the crispness of bread crust. Journal of Cereal Science, 43, 342–352.Primo-Martin, C., Sozer, N., Hamer, R. J., & Van Vliet, T. (2009). Effect of water activity on fracture and acoustic characteristics of a crust model. Journal of Food Engineering, 90, 277–284.Roudaut, G., Dacremont, C., & Le Meste, M. (1998). Influence of water on the crispness of cereal-based foods: acoustic, mechanical, and sensory studies. Journal of Texture Studies, 29, 199–213.Roudaut, G., Dacremont, C., Pamies, B. V., Colas, B., & Le Meste, M. (2002). Crispness: a critical review on sensory and material science approaches. Trends in Food Science and Technology, 13, 217–227.Rojas JA (2000) Uso combinado de hidrocoloides y alfa-amilasa como mejorantes en panificación. Dissertation PhD Thesis. Universidad Politécnica de ValenciaRosell, C. M. (2007). Vitamin and mineral fortification of bread. In B. Hamaker (Ed.), Technology of functional cereal products. Cambridge: Woodhead Publishing Ltd.Rosell, C. M. (2011). The science of doughs and bread quality. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Flour and breads and their fortification in health and disease prevention (pp. 3–14). London: Academic.Rosell CM, Altamirano-Fortoul R & Hernando I (2011) Mechanical properties of bread crust by puncture test and the effect of sprayed enzymes. In: Proceedings of 6th International Congress Flour. Bread’11, 8th Croatian Congress of Cereal Technologist, 12–14 October 2011, Opatija, Croatia. ISSN 1848–2562.Sahlström, S., & Brathen, E. (1997). Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling. Food Chemistry, 58, 75–80.Sharma K & Singh J (2010) Enzymes in baking industry. Panesar, P.S.; Marwaha, S.S and Chopra, H.K. (Eds), Enzymes in food processing, fundamentals and potential applications, IK International Publishing House Pvt. Ltd, New Delhi, India.Stokes, D. J., & Donald, A. M. (2000). In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). Journal of Materials Science, 35, 599–607.Tsukakoshi, Y., Naito, S., & Ishida, N. (2008). Fracture intermittency during a puncture test of cereal snacks and its relation to porous structure. Food Research International, 41, 909–917.Van Benschop CHM, Terdu AG & Hille JDR (2012) Baking enzyme composition as SSL replacer. Patent No.US2012164272.Van Eijk JH (1991) Retarding the firming of bread crumb during storage. Patent No. US5023094.Van Hecke, E., Allaf, K., & Bouvier, J. M. (1998). Texture and structure of crispy-puffed food products—part II: mechanical properties in puncture. Journal of Texture Studies, 29, 617–632.Vanin, F. M., Lucas, T., & Trystram, G. (2009). Crust formation and its role during bread baking. Trends in Food Science and Technology, 20, 333–343.Van Nieuwenhuijzen, N. H., Primo-Martin, C., Meinders, M. B. J., Tromp, R. H., Hamer, R. J., & Van Vliet, T. (2008). Water content or water activity: what rules crispy behavior in bread crust? Journal of Agricultural and Food Chemistry, 56, 6432–6438.Van Oort, M. (2010). Enzymes in bread making. In R. J. Whitehurst & M. Van Oort (Eds.), Enzymes in food technology (2nd ed.). Iowa: Wiley-Blackwell.Vidal, F.D., Guerrety, A.B. (1979) Antistaling agent for bakery products. Patent No. US54160848.Wählby, U., & Skjoldebrand, C. (2002). Reheating characteristic of crust formed on buns, and crust formation. Journal of Food Engineering, 53, 177–184.Würsch, P., & Gumy, D. (1994). Inhibition of amylopectin retrogradation by partial beta-amylosis. Carbohydrate Research, 256, 129–137.Xiong, X., Narsimhan, G., & Okos, M. R. (1991). Effect of composition and pore structure on binding energy and effective diffusivity of moisture in porous foods. Journal of Food Engineering, 15, 187–208

    Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films

    No full text
    The objective of this paper was to study the effect of plasticizers and their concentrations on the thermal and functional properties of gelatin-based films. Four polyols (glycerol-GLY, propylene glycol-PPG, di- DTG and ethylene glycol-ETG) were tested in five concentrations: 10, 15, 20, 25, and 30 g plasticizer/100 g of gelatin. For thermal analysis, the films were conditioned in desiccators with silica gel and for functional properties (mechanical properties, water vapor permeability, color and opacity) characterizations, the films were conditioned at 25 degrees C and 58% relative humidity. The results were discussed in terms of `plasticizer efficiency' meaning plasticizer content effect and also in terms of 'plasticizer effect' meaning the plasticizer type effect on the properties. In a general manner, the higher plasticizing effect on thermal properties was observed with the DTG, followed by PPG, GLY and ETG, principally with low plasticizer content. However, also in terms of thermal properties, the ETG presented the higher plasticizer efficiency followed by the GLY, DTG and PPG. Concerning the mechanical properties, the GLY showed the greater plasticizing effect and efficiency, but the plasticizing efficiency of DTG on the puncture deformation was also considerable. The mechanical resistance could be related with the glass transition temperature of films. It was not possible to observe the plasticizer effect on the water vapor permeability (WVP), but the DTG had shown greater plasticizer efficiency, followed by GLY and ETG, while a counter effect was observed with PPG. The effect of the type and concentration of plasticizer on the color and opacity of films could be considered as negligible. In conclusion, the more important plasticizer effect and efficiency were observed with DTG and ETG on the thermal properties, and with the GLY in terms of functional properties. The behavior of the mechanical properties of films could be explained by its glass transition temperature. (c) 2005 Elsevier Ltd. All rights reserved.19589990
    corecore