125 research outputs found

    Structural and biochemical insights of CypA and AIF interaction

    Get PDF
    The Cyclophilin A (CypA)/Apoptosis Inducing Factor (AIF) complex is implicated in the DNA degradation in response to various cellular stress conditions, such as oxidative stress, cerebral hypoxia-ischemia and traumatic brain injury. The pro-apoptotic form of AIF (AIF(Δ1-121)) mainly interacts with CypA through the amino acid region 370-394. The AIF(370-394) synthetic peptide inhibits complex formation in vitro by binding to CypA and exerts neuroprotection in a model of glutamate-mediated oxidative stress. Here, the binding site of AIF(Δ1-121) and AIF(370-394) on CypA has been mapped by NMR spectroscopy and biochemical studies, and a molecular model of the complex has been proposed. We show that AIF(370-394) interacts with CypA on the same surface recognized by AIF(Δ1-121) protein and that the region is very close to the CypA catalytic pocket. Such region partially overlaps with the binding site of cyclosporin A (CsA), the strongest catalytic inhibitor of CypA. Our data point toward distinct CypA structural determinants governing the inhibitor selectivity and the differential biological effects of AIF and CsA, and provide new structural insights for designing CypA/AIF selective inhibitors with therapeutic relevance in neurodegenerative diseases

    Cooperative Binding of the Cationic Porphyrin Tris-T4 Enhances Catalytic Activity of 20S Proteasome Unveiling a Complex Distribution of Functional States

    Get PDF
    The present study provides new evidence that cationic porphyrins may be considered as tunable platforms to interfere with the structural "key code" present on the 20S proteasome α-rings and, by consequence, with its catalytic activity. Here, we describe the functional and conformational effects on the 20S proteasome induced by the cooperative binding of the tri-cationic 5-(phenyl)-10,15,20-(tri N-methyl-4-pyridyl) porphyrin (Tris-T4). Our integrated kinetic, NMR, and in silico analysis allowed us to disclose a complex effect on the 20S catalytic activity depending on substrate/porphyrin concentration. The analysis of the kinetic data shows that Tris-T4 shifts the relative populations of the multiple interconverting 20S proteasome conformations leading to an increase in substrate hydrolysis by an allosteric pathway. Based on our Tris-T4/h20S interaction model, Tris-T4 is able to affect gating dynamics and substrate hydrolysis by binding to an array of negatively charged and hydrophobic residues present on the protein surface involved in the 20S molecular activation by the regulatory proteins (RPs). Accordingly, despite the fact that Tris-T4 also binds to the α3ΔN mutant, allosteric modulation is not observed since the molecular mechanism connecting gate dynamics with substrate hydrolysis is impaired. We envisage that the dynamic view of the 20S conformational equilibria, activated through cooperative Tris-T4 binding, may work as a simplified model for a better understanding of the intricate network of 20S conformational/functional states that may be mobilized by exogenous ligands, paving the way for the development of a new generation of proteasome allosteric modulators

    Investigating the antiparasitic potential of the marine sesquiterpene avarone, its reduced form avarol, and the novel semisynthetic thiazinoquinone analogue thiazoavarone

    Get PDF
    The chemical analysis of the sponge Dysidea avara afforded the known sesquiterpene quinone avarone, along with its reduced form avarol. To further explore the role of the thiazinoquinone scaffold as an antiplasmodial, antileishmanial and antischistosomal agent, we converted the quinone avarone into the thiazinoquinone derivative thiazoavarone. The semisynthetic compound, as well as the natural metabolites avarone and avarol, were pharmacologically investigated in order to assess their antiparasitic properties against sexual and asexual stages of Plasmodium falciparum, larval and adult developmental stages of Schistosomamansoni (eggs included), and also against promastigotes and amastigotes of Leishmania infantum and Leishmania tropica. Furthermore, in depth computational studies including density functional theory (DFT) calculations were performed. A toxic semiquinone radical species which can be produced starting both from quinone- and hydroquinone-based compounds could mediate the anti-parasitic effects of the tested compounds

    Structural and functional studies of Stf76 from the Sulfolobus islandicus plasmid-virus pSSVx: a novel peculiar member of the winged helix–turn–helix transcription factor family

    Get PDF
    The hybrid plasmid virus pSSVx from Sulfolobus islandicus presents an open reading frame encoding a 76 aminoacid protein, namely Stf76, that does not show significant sequence homology with any protein with known three-dimensional structure. The recombinant protein recognises specifically two DNA binding sites located in its own promoter, thus suggesting an auto-regulated role of its expression. CD, spectrofluorimetric, light scattering and ITC experiments indicated a 2:1 molar ratio (protein:DNA) upon binding to the DNA target containing a single site. Furthermore, the solution structure of Stf76, determined by nuclear magnetic resonance (NMR) using chemical shift Rosetta software, has shown that the protein assumes a winged helix–turn–helix fold. NMR chemical shift perturbation analysis has been performed for the identification of the residues responsible for DNA interaction. In addition, a model of the Stf76-DNA complex has been built using as template a structurally related homolog

    MucR binds multiple target sites in the promoter of its own gene and is a heat-stable protein: Is MucR a H-NS-like protein?

    Get PDF
    The protein MucR from Brucella spp. is involved in the expression regulation of genes necessary for host interaction and infection. MucR is a member of the Ros/MucR family, which comprises prokaryotic zinc-finger proteins and includes Ros from Agrobacterium tumefaciens and the Ml proteins from Mesorhizobium loti. MucR from Brucella spp. can regulate the expression of virulence genes and repress its own gene expression. Despite the well-known role played by MucR in the repression of its own gene, no target sequence has yet been identified in the mucR promoter gene. In this study, we provide the first evidence that MucR from Brucella abortus binds more than one target site in the promoter region of its own gene, suggesting a molecular mechanism by which this protein represses its own expression. Furthermore, a circular dichroism analysis reveals that MucR is a heat-stable protein. Overall, the results of this study suggest that MucR might resemble a H-NS protein

    Design, Optimization, and Structural Characterization of an Apoptosis-Inducing Factor Peptide Targeting Human Cyclophilin A to Inhibit Apoptosis Inducing Factor-Mediated Cell Death

    Get PDF
    Blocking the interaction between the apoptosis-inducing factor (AIF) and cyclophilin A (CypA) by the AIF fragment AIF(370-394) is protective against glutamate-induced neuronal cell death and brain injury in mice. Starting from AIF(370-394), we report the generation of the disulfide-bridged and shorter variant AIF(381-389) and its structural characterization by nuclear magnetic resonance (NMR) in the free and CypA-bound state. AIF(381-389) in both the free and bound states assumes a β-hairpin conformation similar to that of the fragment in the AIF protein and shows a highly reduced conformational flexibility. This peptide displays a similar in vitro affinity for CypA, an improved antiapoptotic activity in cells and an enhanced proteolytic stability compared to the parent peptide. The NMR-based 3D model of the AIF(381-389)/CypA complex provides a better understanding of the binding hot spots on both the peptide and the protein and can be exploited to design AIF/CypA inhibitors with improved pharmacokinetic and pharmacodynamics features

    MS Dereplication for Rapid Discovery of Structurally New or Novel Natural Products

    Get PDF
    In order to accelerate the isolation and characterisation of structurally new or novel natural products, it is crucial to develop efficient strategies that prioritise samples with greatest promise early in the workflow so that resources can be utilised in a more efficient and cost-effective manner. Two complementary approaches have been developed: One is based on targeted identification of known compounds held in a database based on high resolution MS and predicted LC retention time data [1]. The second is an MS metrics-based approach where the software algorithm calculates metrics for sample novelty, complexity, and diversity after interrogating databases of known compounds, and contaminants. These metrics are then used to prioritise samples for isolation and structure elucidation work [2]. Both dereplication approaches have been validated using natural product extracts resulting in the isolation and characterization of new or novel natural products

    High-Resolution Conformational Analysis of RGDechi-Derived Peptides Based on a Combination of NMR Spectroscopy and MD Simulations

    Get PDF
    The crucial role of integrin in pathological processes such as tumor progression and metastasis formation has inspired intense efforts to design novel pharmaceutical agents modulating integrin functions in order to provide new tools for potential therapies. In the past decade, we have investigated the biological proprieties of the chimeric peptide RGDechi, containing a cyclic RGD motif linked to an echistatin C-terminal fragment, able to specifically recognize αvβ3 without cross reacting with αvβ5 and αIIbβ3 integrin. Additionally, we have demonstrated using two RGDechi-derived peptides, called RGDechi1-14 and ψRGDechi, that chemical modifications introduced in the C-terminal part of the peptide alter or abolish the binding to the αvβ3 integrin. Here, to shed light on the structural and dynamical determinants involved in the integrin recognition mechanism, we investigate the effects of the chemical modifications by exploring the conformational space sampled by RGDechi1-14 and ψRGDechi using an integrated natural-abundance NMR/MD approach. Our data demonstrate that the flexibility of the RGD-containing cycle is driven by the echistatin C-terminal region of the RGDechi peptide through a coupling mechanism between the N- and C-terminal regions

    Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1

    Get PDF
    AbstractIn the mouse, ZFP57 contains three classical Cys2His2 zinc finger domains (ZF) and recognizes the methylated TGCmetCGC target sequence using the first and the second ZFs. In this study, we demonstrate that the human ZFP57 (hZFP57) containing six Cys2His2 ZFs, binds the same methylated sequence through the third and the fourth ZFs, and identify the aminoacids critical for DNA interaction. In addition, we present evidences indicating that hZFP57 mutations and hypomethylation of the TNDM1 ICR both associated with Transient Neonatal Diabetes Mellitus type 1 result in loss of hZFP57 binding to the TNDM1 locus, likely causing PLAGL1 activation
    • …
    corecore