3,402 research outputs found

    Development of a rotating gravity gradiometer for earth orbit applications (AAFE)

    Get PDF
    Some preliminary mission studies are described along with the design, fabrication, and test of a breadboard model of an earth orbital, rotating gravity gradiometer with a design goal of 10 to the minus 11th power/sec sq (0.01 EU) in a 35-sec integration time. The proposed mission uses a Scout vehicle to launch one (or two orthogonally oriented) spin-stabilized satellites into a 330-km circular polar orbit some 20 days before an equinox. During the short orbital lifetime, the experiment would obtain two complete maps of the gravity gradient field with a resolution approaching 270 km (degree 75). The breadboard model of the gradiometer demonstrated a combined thermal and electronic noise threshold of 0.015 EU per data channel. The design changes needed to reduce the noise to less than 0.01 EU were identified. Variations of the sensor output signal with temperature were experimentally determined and a suitable method of temperature compensation was developed and tested. Other possible error sources, such as sensor interaction with satellite dynamics and magnetic fields, were studied analytically and shown to be small

    Effects of a standard provision versus an autonomy supportive exercise referral programme on physical activity, quality of life and well-being indicators:a cluster randomised controlled trial

    Get PDF
    Background: The National Institute for Health and Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the feasibility and impact of a Self Determination Theory-based (SDT) exercise referral consultation. Methods: An exploratory cluster randomised controlled trial comparing standard provision exercise referral with an exercise referral intervention grounded in Self Determination Theory. Individuals (N = 347) referred to an exercise referral scheme were recruited into the trial from 13 centres. Outcomes and processes of change measured at baseline, 3 and 6-months: Minutes of self-reported moderate or vigorous physical activity (PA) per week (primary outcome), health status, positive and negative indicators of emotional well-being, anxiety, depression, quality of life (QOL), vitality, and perceptions of autonomy support from the advisor, need satisfaction (3 and 6 months only), intentions to be active, and motivational regulations for exercise. Blood pressure and weight were assessed at baseline and 6 months.Results: Perceptions of the autonomy support provided by the health and fitness advisor (HFA) did not differ by arm. Between group changes over the 6-months revealed significant differences for reported anxiety only. Within arm contrasts revealed significant improvements in anxiety and most of the Dartmouth CO-OP domains in the SDT arm at 6 months, which were not seen in the standard exercise referral group. A process model depicting hypothesized relationships between advisor autonomy support, need satisfaction and more autonomous motivation, enhanced well being and PA engagement at follow up was supported. Conclusions: Significant gains in physical activity and improvements in quality of life and well-being outcomes emerged in both the standard provision exercise referral and the SDT-based intervention at programme end. At 6-months, observed between arm and within intervention arm differences for indicators of emotional health, and the results of the process model, were in line with SDT. The challenges in optimising recruitment and implementation of SDT-based training in the context of health and leisure services are discussed

    Exact Maximal Height Distribution of Fluctuating Interfaces

    Full text link
    We present an exact solution for the distribution P(h_m,L) of the maximal height h_m (measured with respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L where the function f(x) is the Airy distribution function that describes the probability density of the area under a Brownian excursion over a unit interval. For the free boundary case, the same scaling holds but the scaling function is different from that of the periodic case. Numerical simulations are in excellent agreement with our analytical results. Our results provide an exactly solvable case for the distribution of extremum of a set of strongly correlated random variables.Comment: 4 pages revtex (two-column), 1 .eps figure include

    Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition

    Get PDF
    In the selective withdrawal experiment fluid is withdrawn through a tube with its tip suspended a distance S above a two-fluid interface. At sufficiently low withdrawal rates, Q, the interface forms a steady state hump and only the upper fluid is withdrawn. When Q is increased (or S decreased), the interface undergoes a transition so that the lower fluid is entrained with the upper one, forming a thin steady-state spout. Near this transition the hump curvature becomes very large and displays power-law scaling behavior. This scaling allows for steady-state hump profiles at different flow rates and tube heights to be scaled onto a single similarity profile. I show that the scaling behavior is independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl

    Reactions at polymer interfaces: A Monte Carlo Simulation

    Full text link
    Reactions at a strongly segregated interface of a symmetric binary polymer blend are investigated via Monte Carlo simulations. End functionalized homopolymers of different species interact at the interface instantaneously and irreversibly to form diblock copolymers. The simulations, in the framework of the bond fluctuation model, determine the time dependence of the copolymer production in the initial and intermediate time regime for small reactant concentration ρ0Rg3=0.163...0.0406\rho_0 R_g^3=0.163 ... 0.0406. The results are compared to recent theories and simulation data of a simple reaction diffusion model. For the reactant concentration accessible in the simulation, no linear growth of the copolymer density is found in the initial regime, and a t\sqrt{t}-law is observed in the intermediate stage.Comment: to appear in Macromolecule

    Energy input is primary controller of methane bubbling in subarctic lakes

    Get PDF
    Emission of methane (CH4) from surface waters is often dominated by ebullition (bubbling), a transport mode with high‐spatiotemporal variability. Based on new and extensive CH4 ebullition data, we demonstrate striking correlations (r2 between 0.92 and 0.997) when comparing seasonal bubble CH4 flux from three shallow subarctic lakes to four readily measurable proxies of incoming energy flux and daily flux magnitudes to surface sediment temperature (r2 between 0.86 and 0.94). Our results after continuous multiyear sampling suggest that CH4 ebullition is a predictable process, and that heat flux into the lakes is the dominant driver of gas production and release. Future changes in the energy received by lakes and ponds due to shorter ice‐covered seasons will predictably alter the ebullitive CH4 flux from freshwater systems across northern landscapes. This finding is critical for our understanding of the dynamics of radiatively important trace gas sources and associated climate feedback

    Windings of the 2D free Rouse chain

    Full text link
    We study long time dynamical properties of a chain of harmonically bound Brownian particles. This chain is allowed to wander everywhere in the plane. We show that the scaling variables for the occupation times T_j, areas A_j and winding angles \theta_j (j=1,...,n labels the particles) take the same general form as in the usual Brownian motion. We also compute the asymptotic joint laws P({T_j}), P({A_j}), P({\theta_j}) and discuss the correlations occuring in those distributions.Comment: Latex, 17 pages, submitted to J. Phys.

    Minimum Specific Energy and Critical Flow Conditions in Open Channels

    Get PDF
    In open channels, the relationship between the specific energy and the flow depth exhibits a minimum, and the corresponding flow conditions are called critical flow conditions. Herein they are re-analysed on the basis of the depth-averaged Bernoulli equation. At critical flow, there is only one possible flow depth, and a new analytical expression of that characteristic depth is developed for ideal-fluid flow situations with non-hydrostatic pressure distribution and non-uniform velocity distribution. The results are applied to relevant critical flow conditions : e.g., at the crest of a spillway. The finding may be applied to predict more accurately the discharge on weir and spillway crests

    Improved genome editing in human cell lines using the CRISPR method

    Get PDF
    The Cas9/CRISPR system has become a popular choice for genome editing. In this system, binding of a single guide (sg) RNA to a cognate genomic sequence enables the Cas9 nuclease to induce a double-strand break at that locus. This break is next repaired by an error-prone mechanism, leading to mutation and gene disruption. In this study we describe a range of refinements of the method, including stable cell lines expressing Cas9, and a PCR based protocol for the generation of the sgRNA. We also describe a simple methodology that allows both elimination of Cas9 from cells after gene disruption and re-introduction of the disrupted gene. This advance enables easy assessment of the off target effects associated with gene disruption, as well as phenotype-based structure-function analysis. In our study, we used the Fan1 DNA repair gene as control in these experiments. Cas9/CRISPR-mediated Fan1 disruption occurred at frequencies of around 29%, and resulted in the anticipated spectrum of genotoxin hypersensitivity, which was rescued by re-introduction of Fan1
    corecore