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Minimum Specific Energy and Critical Flow Conditions in Open Channels 

by H. Chanson1 

 

Abstract : In open channels, the relationship between the specific energy and the flow depth exhibits a 

minimum, and the corresponding flow conditions are called critical flow conditions. Herein they are 

re-analysed on the basis of the depth-averaged Bernoulli equation. At critical flow, there is only one 

possible flow depth, and a new analytical expression of that characteristic depth is developed for ideal-

fluid flow situations with non-hydrostatic pressure distribution and non-uniform velocity distribution. 

The results are applied to relevant critical flow conditions : e.g., at the crest of a spillway. The finding 

may be applied to predict more accurately the discharge on weir and spillway crests. 

Keywords: Open channel flow; Critical flow; Minimum specific energy; Discharge coefficient; Weirs 

and spillways. 

 

INTRODUCTION 

Considering an open channel flow, the free-surface is always at atmospheric pressure, the driving 

force of the fluid motion is gravity, and the fluid is incompressible and Newtonian. Newton's law of 

motion leads to the Navier-Stokes equations. The integration of the Navier Stokes equations along a 

streamline, assuming that the fluid is frictionless, the volume force potential (i.e. gravity) is 

independent of the time, for a steady flow (i.e. ∂V/∂t = 0) and an incompressible flow (i.e. ρ = 

constant), yields : 

 
P
ρ  +  g * z  +  

V2
2   =  constant (1) 
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where ρ is the fluid density, g is the gravity acceleration, z is the elevation aligned along the vertical 

direction and positive upwards), P is the pressure, V is the velocity (Henderson 1966, Liggett 1993, 

Chanson 1999,2004). Equation (1) is the local form of the Bernoulli equation. 

In this study, the singularity of the depth-averaged Bernoulli principle for open channel flow is 

detailed : i.e, the critical flow conditions. Detailed expressions of the critical flow properties are 

derived for the general case of non-hydrostatic and non-uniform velocity distributions. The results are 

then applied to the rating curve of weir crest acting as discharge meter. 

 

Application to open channel flows 

In open channels, it is common to use the depth-averaged Bernoulli equation within the frame of 

relevant assumptions (e.g. Liggett 1993) : 

 H  =  
1
d * 

⌡
⎮
⌠

0 

 d

 ⎝
⎜
⎛

⎠
⎟
⎞V(y)2

2 * g   +  z(y)  +  
P(y)
ρ * g  * dy  =  β * 

V2
2 * g  +  Λ * d  +  zo  =  constant (2) 

where H is the depth-averaged total head, zo is the bottom elevation, d is the flow depth, β is the 

momentum correction coefficient (or Boussinesq coefficient), V is the depth-averaged velocity : 

 V  =  
1
d * ⌡⌠

0 

 d

V * dy (3) 

y is the distance normal to the channel bed and Λ is a pressure correction coefficient defined as : 

 Λ  =  
1
2  +  

1
d * 

⌡
⌠

0 

 d

 
P(y)

ρ*g*d * dy (4) 

For a flat channel assuming a hydrostatic pressure distribution, the pressure correction coefficient Λ is 

unity and the depth-averaged total head H equals : 

 H  =  β * 
V2

2 * g  +  d  +  zo  =  E  +  zo (5) 

where E is the depth-averaged specific energy. 
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CRITICAL FLOW CONDITIONS 

Considering a short smooth transition, and assuming a constant flow rate, the relationship between the 

specific energy (E = H - zo) and flow depth exhibits a characteristic shape (e.g. Fig. 1). For a given 

cross-section shape, the specific energy is minimum for flow conditions (dc, Vc) called the critical 

flow conditions. The concept of critical flow conditions was first developed by Bélanger (1828) as the 

location where d = Q2/(g*A2) for a flat channel, where Q is the flow rate and A is the flow cross-

section area. It was associated with the idea of minimum specific energy by Bakhmeteff (1912,1932). 

Both Bélanger and Bakhmeteff developed the concept of critical flow in relation with the singularity 

of the backwater equation for d = Q2/(g*A2) (i.e. critical flow conditions). 

A typical situation with minimum specific energy is shown on Figure 2 where critical flow conditions 

occur at the point of maximum invert elevation : i.e., the weir crest. Assuming a smooth frictionless 

overflow, the depth-averaged Bernoulli equation states : 

 H  =  (zo)crest  +  Emin  =  (zo)crest  +  Λcrest * dc  +  βcrest * 
Vc

2

2 * g (6a) 

where H is the upstream total head, (zo)crest is the crest elevation, Emin is the minimum specific 

energy (Fig. 2), βcrest and Λcrest are respectively the momentum and pressure correction coefficients 

at the crest. Note that, at the crest, the y-direction is exactly vertical, the streamlines are curved, the 

pressure distribution is not hydrostatic and the velocity distribution is not uniform.  

For a rectangular channel, the continuity and Bernoulli equations give two equations in terms of the 

critical flow depth and depth-averaged velocity : 

 q  =  Vc * dc  =  CD * g * ⎝
⎛

⎠
⎞2

3 * Emin
3/2

 Continuity equation  (7) 

 Emin  =  Λcrest * dc  +  βcrest * 
Vc

2

2 * g Bernoulli equation  (6b) 

where q is the discharge per unit width and CD is a dimensionless discharge coefficient. 

If the minimum specific energy Emin and flow rate per unit width q are known parameters, the 

combination of Equations (7) and (6b) gives a third order polynomial equation in terms of the 

dimensionless flow depth at crest (i.e. dc/Emin) : 

 
⎝
⎜
⎛

⎠
⎟
⎞dc

Emin

3
  -  

⎝
⎜
⎛

⎠
⎟
⎞dc

Emin

2
 * 

1
Λcrest

  +  
1
2 * 

βcrest * CD
2

Λcrest
 * ⎝

⎛
⎠
⎞2

3
3

  =  0 (8) 
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Equation (80) has one, two or three real solutions depending upon the sign of the discriminant ∆ (see 

App. I) : 

 ∆  =  
⎝⎜
⎛

⎠⎟
⎞1

3 * Λcrest

6
 * 4 * βcrest * CD

2 * Λcrest
2 * ( )βcrest * CD

2 * Λcrest
2  -  1  (9) 

The solution of Equation (8) gives an expression of the dimensionless critical depth as a function of 

the pressure correction coefficient, momentum correction coefficient and discharge coefficient. Further 

the Bernoulli equation implies for an overflow : 

 0  ≤  Λcrest * 
dc

Emin
  ≤ 1 (10) 

The detailed solutions of Equation (8) are developed in Appendix I. Meaningful solutions exist only 

for ∆ ≤ 0. These solutions are plotted in Figure 3 as dc/Emin*Λcrest versus βcrest*CD2*Λcrest2. The 

analytical results are compared with the re-analysis of experimental data (Fawer 1937, Vo 1992), flow 

net analysis (Fawer 1937) and detailed analytical solution (Fawer 1937). The experimental flow 

conditions are listed in Table 1 and one complete data set is presented in Figure 4. 

Overall the data (Fig. 3) follow closely the solution S3 : 

 
dc

Emin
  =  

2
3 * Λcrest

 * 
1
2 * ( )1  -  cos(δ/3)  +  3 * (1 - (cos(δ/3))2)  Solution S3  (11) 

where : 

 cosδ  =  1  -  2 * βcrest * CD
2 * Λcrest

2 (12) 

It is unclear why experimental data do not follow the solution S1, although it is conceivable that S1 

might be an unstable solution. 

For a hydrostatic pressure distribution (Λcrest = 1) and an uniform velocity distribution (βcrest = 1), 

the discharge coefficient is unity and the flow depth at crest equals : 

 
dc

Emin
  =  

2
3 (13) 

For example, an ideal fluid flow above a broad-crested weir. 
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DISCUSSION 

The analysis of Equation (8) yields basic conclusions. First the product βcrest*CD
2*Λcrest

2 must be 

less or equal than unity : 

 βcrest * CD
2 * Λcrest

2  ≤  1 (14) 

As the momentum correction coefficient βcrest is equal to or larger than unity, Equation (14) implies 

that discharge coefficients larger than unity may be obtained only when the crest pressure distribution 

is less than hydrostatic. 

Second, for transition from sub- to super-critical flow, experimental results (Fig. 3) indicate that: 

 
dc

Emin
 * Λcrest  ≤  

2
3 (15) 

That is, the dimensionless critical flow depth equals the solution S3 (App. I). That the streamline 

curvature implies usually (Λcrest < 1) at a weir crest. Therefore Equation (15) does not imply 

dc/Emin < 2/3. The result is well-known for overflow circular weirs (e.g. Vo 1992, Chanson and 

Montes 1998). 

Third the pressure and velocity distributions at the crest can be predicted using ideal fluid flow theory 

(i.e. potential flow theory). Hence βcrest and Λcrest may be calculated theoretically because the entire 

flow field may be predicted assuming an ideal fluid with irrotational flow motion. Assuming a two-

dimensional flow, the vertical distributions of pressure and velocity may be accurately determined 

numerically by a computational method, graphically by a flow net analysis, or analytically for simple 

geometries (e.g. Fawer 1937, Rouse 1946, Jaeger 1956, Vallentine 1969). Then the relevant 

parameters become dc/Emin and CD, or q, dc and Emin. 

 

Application : spillway crest as a discharge meter 

If the momentum and pressure correction coefficients may be predicted theoretically, the continuity 

and Bernoulli equations imply that a spillway crest may be used as an accurate discharge meter using 

the solution of Equation (8). In practice the upstream head above spillway crest (i.e. Emin) is known 

and the unknown is the flow rate q. If the flow depth at the crest (i.e. the critical flow depth dc) is 

measured, Equation (11) and Figure 3 provide the value of the discharge coefficient CD satisfying 

Equation (8), and the flow rate is deduced from Equation (7). In contrast with the free overfall, a 
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spillway crest is a better discharge meter because the correction coefficients and the discharge 

coefficient are close to unity. 

Considering a circular weir (R = 4.5 m) with an upstream vertical weir in a rectangular channel, the 

upstream head above crest is 10.6 m and the measured depth on the crest is 7.4 m. Compute the flow 

rate. Fawer (1937) derived the flow net solution of this case. His graphical result based upon 8 stream 

tubes predicted: βcrest = 1.0 and Λcrest = 0.5. For these values, Equation (11) and Figure 3 imply that 

CD = 1.44. Fawer conducted the corresponding experiment that yielded : CD = 1.4, while his detailed 

potential flow solution gave CD = 1.38. Both results are close to the analytical prediction (Eq. (11) 

and Fig. 3). 

 

CONCLUSION 

Critical flow conditions in open channel are re-analysed using the depth-averaged form of the 

Bernoulli equation. At critical flow, a new analytical expression of the critical flow depth is derived 

for ideal-fluid flows. The result is applied to critical flow situations with non-hydrostatic pressure 

distribution and non-uniform velocity distribution. It yields pertinent information on the flow 

properties at a weir crest. The findings may be applied to predict accurately the discharge at the crest 

at spillways and weirs, by combining Equation (11) and Figure 3 with simple ideal fluid flow theory 

(e.g. flow net analysis). 

In real-fluid flows, boundary friction induces a flow region affected by shear and momentum 

exchange: i.e., a developing boundary layer. Converging and accelerating flow situations (e.g. 

spillway intake) have generally thin boundary layers. Present ideal fluid results may be applied to 

short transitions of real fluids to a satisfactory degree of approximation, but they are not applicable to 

long waterway : e.g., undular flow in culvert barrel. 
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APPENDIX I. CRITICAL FLOW DEPTH 

The continuity and Bernoulli equations give an expression for the critical flow depth as the solution 

of: 

 
⎝
⎜
⎛

⎠
⎟
⎞dc

Emin

3
  -  

⎝
⎜
⎛

⎠
⎟
⎞dc

Emin

2
 * 

1
Λcrest

  +  
1
2 * 

βcrest * CD
2

Λcrest
 * ⎝

⎛
⎠
⎞2

3
3

  =  0 (I-1) 

Equation (I-1) has one, two or three real solutions depending upon the sign of the discriminant ∆ : 

 ∆  =  
1

Λcrest
6 * 

4
36 * βcrest * CD

2 * Λcrest
2 * ( )βcrest * CD

2 * Λcrest
2  -  1  (I-2) 

For ∆ > 0, Equation (I-1) has only one real solution : 

 
dc

Emin
 * Λcrest  =  

3 1
27 * ( )1  -  2*βcrest*CD

2*Λcrest
2   +  Λcrest

6 * ∆ 

    +  
3 1

27 * ( )1  -  2*βcrest*CD
2*Λcrest

2   -  Λcrest
6 * ∆   +  

1
3            (I-3) 

For ∆ = 0, the following condition holds : 

 βcrest * CD
2 * Λcrest

2  -  1  =  0 (I-4) 

The only physical solution of Equation (I-1) is : 

 
dc

Emin
 * Λcrest  =  

2
3  =  

2
3 * βcrest * CD * Λcrest (I-5) 

For ∆ = 0, the second real solution is negative : dc/Emin = -1/(3*Λcrest). 

For ∆ < 0 there are three real solutions : 

 
⎝
⎜
⎛

⎠
⎟
⎞dc

Emin
 * Λcrest

1
  =  

2
3 * ⎝

⎛
⎠
⎞1

2  +  cos(δ/3)  Solution S1  (I-6A) 

 
⎝
⎜
⎛

⎠
⎟
⎞dc

Emin
 * Λcrest

2
  =  

2
3 * 

1  -  cos(δ/3)  -  3 * (1 - (cos(δ/3))2)
2  Solution S2  (I-6B) 

 
⎝
⎜
⎛

⎠
⎟
⎞dc

Emin
 * Λcrest

3
  =  

2
3 * 

1  -  cos(δ/3)  +  3 * (1 - (cos(δ/3))2)
2  Solution S3  (I-6C) 

where : 
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 cosδ  =  1  -  2 * βcrest * CD
2 * Λcrest

2 (I-7) 

Note that ∆ < 0 implies : βcrest*CD
2*Λcrest

2 < 1. 
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APPENDIX III. NOTATION. 

The following symbols are used in this paper : 

A = flow cross-section area (m2); 

CD = discharge coefficient; 

d = flow depth (m) measured perpendicular to the channel bottom; 

dc = critical flow depth (m) : i.e., flow depth at minimum specific energy; 

E = specific energy (m); 

Emin = minimum specific energy (m); 

g = gravity constant; 

H = depth-averaged total head (m); 

P = pressure (Pa); 

Q = water discharge (m3/s); 

q = water discharge per unit width (m2/s); 

R = radius (m) or curvature of spillway crest; 

t = time (s); 

V = depth-averaged velocity (m/s); 

Vc = critical flow velocity (m/s) : i.e., depth-averaged flow velocity at minimum specific 

energy; 

V = local velocity (m/s); 

W = channel width (m); 

y = distance measured perpendicular to the channel bottom (m); 

z = elevation (m) taken positive upwards; 

zo = bed elevation (m) taken positive upward; 

β = momentum correction coefficient; 
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ρ = water density (kg/m3); 

Λ = pressure correction coefficient; 

 

Subscript 

c = critical flow conditions (i.e. at minimum specific energy); 

crest = conditions at crest. 
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Table 1. Summary of re-analysed experimental flow measurements 

 
Reference Configuration Measurements Remarks 

(1) (2) (3) (4) 
Fawer (1937) Circular weir (R = 0.0325 m) 

Vertical upstream wall 
3:2 downstream slope 
Weir height: 0.0315 and 0.3325 m 

Invert pressure distributions. 
Vertical distributions of 
pressure and velocity (Pitot 
tube). 

2.5 m long 0.303 m wide 
upstream flume. 

Vo (1992) Circular weir (R = 0.0095 to 0.1516 
m) 
Upstream slope: 90º, 75º, 60º 
Downstream slope: 75º, 60º, 45º 

Invert pressure distributions. 
Vertical distributions of 
pressure and velocity (LDV). 

1.8 m long 0.254 m wide 
upstream flume. (Also 
Ramamurthy et al. 1992.) 
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Fig. 1 - Relationship between dimensionless specific energy E/dc and dimensionless flow depth d/dc 

in a smooth rectangular channel assuming a hydrostatic pressure distribution 
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Fig. 2 - Critical flow conditions at a weir crest - Definition sketch 
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Fig. 3 - Dimensionless critical flow depth at the crest of a weir : dc/Emin*Λcrest versus 

βcrest*CD2*Λcrest2 - Comparison with experimental data (Fawer 1937, Vo 1992), a flow net analysis 

with 8 stream tubes (Fawer 1937) and a detailed analytical solution (Fawer 1937) 
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Fig. 4 - Dimensionless pressure and velocity distributions at the crest of a weir : P/ρ*g*dc and 

V/ g*Emin versus dc/Emin (Fawer 1937, dc = 0.0537 m, Emin = 0.0768 m, R = 0.0325 m) - 

Comparison between experimental data, flow net analysis (8 stream tubes) and detailed analytical 

solution (ideal fluid) 
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