888 research outputs found
Human exposure in low Earth orbit
Human exposure to trapped electrons and protons in low Earth orbit (LEO) is evaluated on a basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. Detailed shielding studies should be performed before final design considerations. A sample impact assessment is discussed on the basis of presently accepted allowable exposure limits. A brief discussion is given on the anticipated impact of an ongoing reassessment of allowable exposure limits
Transport model of nucleon-nucleus reaction
A simplified model of nucleon-nucleus reaction is developed and some of its properties are examined. Comparisons with proton production measured for targets of Al-27, Ni-58, Zr-90, and Bi-209 show some hope for developing an accurate model for these complex reactions. It is suggested that binding effects are the next step required for further development
Hybrid Photonic Antennae Based on Mesoporous Silica Frameworks
This contribution describes design, preparation and physico-chemical characterization of a new photo-stable hybrid antenna based on mesoporous SBA-15 silica. Concepts of host-guest chemistry are applied in such a way that one or more photoactive guest molecules are incorporated into the silica channels and on the outer surface, acting as energy harvesting and transferring units. The presented composite system be-haves as efficient Förster resonance energy transfer (FRET) pair and shows high photoluminescence and stability towards photodegradation, representing an important step forward in the search for new efficient materials with opto-electronic applications.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3549
Hybrid Photonic Antennae Based on Mesoporous Silica Frameworks
This contribution describes design, preparation and physico-chemical characterization of a new photo-stable hybrid antenna based on mesoporous SBA-15 silica. Concepts of host-guest chemistry are applied in such a way that one or more photoactive guest molecules are incorporated into the silica channels and on the outer surface, acting as energy harvesting and transferring units. The presented composite system be-haves as efficient Förster resonance energy transfer (FRET) pair and shows high photoluminescence and stability towards photodegradation, representing an important step forward in the search for new efficient materials with opto-electronic applications.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3549
The Analysis of the Patterns of Radiation-Induced DNA Damage Foci by a Stochastic Monte Carlo Model of DNA Double Strand Breaks Induction by Heavy Ions and Image Segmentation Software
To create a generalized mechanistic model of DNA damage in human cells that will generate analytical and image data corresponding to experimentally observed DNA damage foci and will help to improve the experimental foci yields by simulating spatial foci patterns and resolving problems with quantitative image analysis. Material and Methods: The analysis of patterns of RIFs (radiation-induced foci) produced by low- and high-LET (linear energy transfer) radiation was conducted by using a Monte Carlo model that combines the heavy ion track structure with characteristics of the human genome on the level of chromosomes. The foci patterns were also simulated in the maximum projection plane for flat nuclei. Some data analysis was done with the help of image segmentation software that identifies individual classes of RIFs and colocolized RIFs, which is of importance to some experimental assays that assign DNA damage a dual phosphorescent signal. Results: The model predicts the spatial and genomic distributions of DNA DSBs (double strand breaks) and associated RIFs in a human cell nucleus for a particular dose of either low- or high-LET radiation. We used the model to do analyses for different irradiation scenarios. In the beam-parallel-to-the-disk-of-a-flattened-nucleus scenario we found that the foci appeared to be merged due to their high density, while, in the perpendicular-beam scenario, the foci appeared as one bright spot per hit. The statistics and spatial distribution of regions of densely arranged foci, termed DNA foci chains, were predicted numerically using this model. Another analysis was done to evaluate the number of ion hits per nucleus, which were visible from streaks of closely located foci. In another analysis, our image segmentaiton software determined foci yields directly from images with single-class or colocolized foci. Conclusions: We showed that DSB clustering needs to be taken into account to determine the true DNA damage foci yield, which helps to determine the DSB yield. Using the model analysis, a researcher can refine the DSB yield per nucleus per particle. We showed that purely geometric artifacts, present in the experimental images, can be analytically resolved with the model, and that the quantization of track hits and DSB yields can be provided to the experimentalists who use enumeration of radiation-induced foci in immunofluorescence experiments using proteins that detect DNA damage. An automated image segmentaiton software can prove useful in a faster and more precise object counting for colocolized foci images
The effect of longitudinal rails on an air cavity stepped planing hull
The use of ventilated hulls is rapidly expanding. However, experimental and numerical analyses are still very limited, particularly for high-speed vessels and for stepped planing hulls. In this work, the authors present a comparison between towing tank tests and CFD analyses carried out on a single-stepped planing hull provided with forced ventilation on the bottom. The boat has identical geometries to those presented by the authors in other works, but with the addition of longitudinal rails. In particular, the study addresses the effect of the rails on the bottom of the hull, in terms of drag, and the wetted surface assessment. The computational methodology is based on URANS equation with multiphase models for high-resolution interface capture between air and water. The tests have been performed varying seven velocities and six airflow rates and the no-air injection condition. Compared to flat-bottomed hulls, a higher incidence of numerical ventilation and air–water mixing effects was observed. At the same time, no major differences were noted in terms of the ability to drag the flow aft at low speeds. Results in terms of drag reduction, wetted surface, and its shape are discussed
Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes
INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to repair. Therefore, this new approach may be useful to understand the nature of DSB and oxidative damage induced by ionizing radiation
Online Sensitivity Optimization in Differentially Private Learning
Training differentially private machine learning models requires constraining an individual’s contribution to the optimization process. This is achieved by clipping the 2-norm of their gradient at a predetermined threshold prior to averaging and batch sanitization. This selection adversely influences optimization in two opposing ways: it either exacerbates the bias due to excessive clipping at lower values, or augments sanitization noise at higher values. The choice significantly hinges on factors such as the dataset, model architecture, and even varies within the same optimization, demanding meticulous tuning usually accomplished through a grid search. In order to circumvent the privacy expenses incurred in hyperparameter tuning, we present a novel approach to dynamically optimize the clipping threshold. We treat this threshold as an additional learnable parameter, establishing a clean relationship between the threshold and the cost function. This allows us to optimize the former with gradient descent, with minimal repercussions on the overall privacy analysis. Our method is thoroughly assessed against alternative fixed and adaptive strategies across diverse datasets, tasks, model dimensions, and privacy levels. Our results indicate that it performs comparably or better in the evaluated scenarios, given the same privacy requirements
Noisy Neighbors: Efficient membership inference attacks against LLMs
The potential of transformer-based LLMs risks being hindered by privacy concerns due to their reliance on extensive datasets, possibly including sensitive information. Regulatory measures like GDPR and CCPA call for using robust auditing tools to address potential privacy issues, with Membership Inference Attacks (MIA) being the primary method for assessing LLMs’ privacy risks. Differently from traditional MIA approaches, often requiring computationally intensive training of additional models, this paper introduces an efficient methodology that generates noisy neighbors for a target sample by adding stochastic noise in the embedding space, requiring operating the target model in inference mode only. Our findings demonstrate that this approach closely matches the effectiveness of employing shadow models, showing its usability in practical privacy auditing scenarios
Assessment of Damage Evolution in Sandwich Composite Material Subjected to Repeated Impacts by Means Optical Measurements
Abstract In the last decade, sandwich composite materials have had an increasing use in design of racing boats. The main reasons are: higher strength-weight ratio, low density, excellent durability and versatility. The knowledge of impact response is very important to design racing boats. The aim of the present study is the investigation of absorbing impact energy ability of a sandwich composite material used for offshore vessels in UIM (Unione Internationale Motonautique) Championship. The material analysed in this study is a sandwich manufactured with hand lay-up technique. In the first phase, the damage assessment of single impact has been studied with an optical measurement technique. In a second phase, the damage evaluation due to repeated impacts has been analysed with the similar technique
- …