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TRANSPORT MODEL OF NUCLEON-NUCLEUS REACTION 

Abstract 

A simplified model of nucleon-nucleus reaction is developed and some 

of its properties are examined. Comparisons with proton production 

measured for targets of 27At, saNi, 90Zr, and 209Bi show some hope for 

developing an accurate model for these complex reactions. It is suggested 

that binding effects are the next step required for further development. 
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Introduction 

The understanding of the interaction of energetic charged particles 

with matter is of importance to radiation protection in space as well as in 

astrophysics and radiotherapy (ref. I). Fundamental to proton transport is 

the understanding of the nuclear reactions involved. Considered herein is 

a simplified model of the nuclear induced reactions with the intent of 

developing a simple formalism which is accurate enough for transport 

calculations. 

Theory 

Ma~ years ago, Serber proposed that high-energy nuclear reactions 

consist of two distinct phases when viewed on a time scale (ref. 2) First, 

the passage of the initiating event is on the order of the transit time 

across the nuclear volume requiring only 

-23 t1 ~ 5 fm/c = 1.7 x 10 sec 

and is short compared to the internal motion within the nuclear interior 

(ref. 2). The second phase of the reaction, which involves the residual 

excitation of the target nucleus after the passage of the projectile, is 

characteristic of the internal nuclear structure and occurs on a much 

longer time scale (-10- 15 sec). 

To treat the first phase, an approximate Boltzmann equation will be 

applied to nuclear matter (refs. 3 and 4). Particle spectra at the end of 

the first step will be evaluated. These may be used in a compound nucleus 

model to further define the Serber second phase. 

The transport equation in nuclear matter is 

rn.v + palw(x,n,E} = rpaf(E,n,E',n'}w(x,n',E'}dn'dE' (1 ) 



where a is the two-body cross section for interaction of the field $ with 

individual constituents of the nuclear matte~, p is the constituent 

density, f(E,n,E',n'} is the secondary production spectra in the 

interaction events, and ~(x,n,E) is the field function of the transported 

part i cl es. 
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Past studies have shown that the straight ahead approximation is fully 

justified in space radiation shielding applications (ref. I). This 

encourages us to ignore the angular dependence in the nuclear problem as it 

is ignored in the transport problem •. All particles are then assumed to be 

produced in the forward direction as would be expected at high energies due 

to relativistic effects as well as the dynamical nature of the two-body 

force. This causes simplifications in equation (I) as 

a + co + 
raz + pal$(b,Z,E) = ( pf(E,E'}~(b,Z,E'}dE' 

E 
+ 

where the direction of motion is along +Z, and b is the impact parameter 

vector. The integral form of equation (2) may be written as 

+ 
~ (b,Z,E) 

Z + 
-f p(b,y}a dy + 

= e -co ~ i (b,E) 

Z' + 

Z r p(b,y)dy 
(

-co 
+. e 

-co 

+ co + 

p(b,Z'}dZ' r f(E,E'}~(b,Z,E'}dE' 
E 

+ + 

(2) 

(3) 

where ~i(b,E) is the incident particle fluence at impact parameter b. and 

its coefficient in equation (3) is the appropriate attenuation factor. In 

what follows, the incident fluence is taken as 

+ 
~i(b,E} = o(E-E o} (4) 

corresponding to a unit fluence with energy Eo. 
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Attenuation of the Primary Beam 

The attenuation of the primary beam is given by the inhomogenous term 

in equation (3) as 

Z + 

+ 
-.r ap ( b ,y ) dy + 

1/Io(b,Z,E) = e 
-co 

1/Ii(b,E) 

which are those particles passing through to a position Z without 

collision. The number which suffer collision before reaching Z are 

z + 

-r ap ( b .y) dy 
+ 

- I 

from which the absorption cross section is obtained by integrating the 

absorption factor over all impact parameters as 

a abs = 21T r 
o 

co 

(1 - e 

co + 
-.r ap ( b ,y ) dy 

-co 
)bdb 

(5) 

(6 ) 

(7) 

in the limit as Z becomes large. Evaluating for a uniform nuclear density 

yields 

where Po is the nucleon density, R is the nuclear radius, and nn(Z) is 

re 1 ated to the exponent i ali ntegra 1 s. I n the 1 i mi t as p oa+oo yi e 1 ds 

as represented by an absorbing disk, and in the limit as poa+o yields 

(8) 

(10) 



where the first term results from scattering from each individual 

constituent and the second term is the first shadow correction. 

Two-body Scattering Cross Sections 

The nucleon-nucleon differential cross section is represented as 

do = Ae +at 
dt 

where 6 is the usual slope parameter and t is the square of the 
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(11 ) 

four-momentum transfer. A is related to the total cross section and to a, 

the ratio of the real-to-imaginary part of the scattering amplitude 

(ref. 5) as 

(12) 

The factor of 2 in equation (12) approximately accounts for the backward 

peak in the cross section. The energy transfer cross section is then 

since 

t = -2mc2(E - E) o 

where m is the rest mass of a nucleon and (Eo - E) the energy transfer. 

Considering the target nucleon at rest yields the struck nucleon recoil 

spectrum as 

dOT 2 2 
~ = 2mc A e-2mc aE 

Thus the spectrum of scattered particles is given by 

(13) 

{14 ) 

{1S) 

(16) 



for use in equation (3). Since the struck nucleon is immersed in a "sea" 

of nucleons, not all energy transfers are allowed. Only those for which 

the struck particle is lifted above the fermi surface may scatter. The 

appropriate cross section is then 

. E 
2 0 

= 2mc A r 
EF 
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(17) 

where the contribution from EF = 0 is the Pauli blocking factor. 

Multiple Scattering Series 

Now consider the transport equation neglecting the recoiling target 

part i cl es 

3 -+- -+-raz + p(b,Z)alw(b,Z,E) (18) 

This is solved by treating the left side of equation (18) as a perturbation 

with the first term 

Z -+-

-+-
- r ap ( b ,y ) dy 

-+-
wo(b,Z,E) = e wi(b,E) (19) 

and assuming boundary condition in equation (4). The first perturbation 

term is 

Z -+-- r ap (b ,y ) dy 
3 -+- -+- -+- -co 

[aT + p(b,Z)al Wl(b,Z,E) = p(b,Z) e 

2 2 -2mc 6(E o - E) 
2mc Ae (20) 

... 
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for which 

Z 
+ Z -.r ap(b,y)dy + -2mc2S(E _ E) 

wl(b,Z,E)=J e -co p(b,Z')2mc2Ae 0 dz' (21) 
-co 

The second perturbation is then 

Z + 

+ Z -.r ap (b ,y ) dy + 

1/I2(b,Z,E) = ( e -co p(b,Z') 
-co 

Z' + -2mc2S(Eo - E) 
x (p(b,Z')dZ"dZ'(2mc2A)2(Eo - E) e (22) 

-co 

and the third iteration as 

Z + 

Z -f ap(b,y)dy + Z + Z + 

= J e -co p(b,Z')( p(b,Z").( p(b,Z" ')dZ'dZ"dZ'" 
-co 

2 2 -2mc B(E - E) 
x ~ (2mc2A)3 (Eo - E) e 0 (23) 

The general term may be written as 

+ + 

wn(b,Z,E) = ~n(b~Z) Fn(E) (24) 

where 

(25) 
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The Fn{E} is 

(26) 

The even smaller perturbations from the target constituent recoil spectrum 

will now be treated. 

Multiple Production Series 

The target recoil constituents are of inferior energy compared to the 

incident beam and are assumed to be reabsorbed by the surrounding nuclear 

material if they further interact after initial production. For each of 

the above terms there is a production term, the first of which is given by 

Z + 

+ + + -,r ap(b,y)dy 2 
rdi + p(b,Z)al wi(b,Z,E} = p(b,Z), e -~ 2mc2Ae-2mc aE (27) 

The solution is 

+ + 222 
wi(b,Z,E) = ~l(b,Z) 2mc A e- mc aE (28) 

+ 

= $r(b,Z) Fr'(E} 

Similarly 

+ + 

w~(b,Z,E} = ~n(b,Z) F~(E} (29) 

where 

A 2 
2 -2mc2aE A n a n_2(2mc a(Eo - E)) 

= 2mc A e (6) r{n-l) (30) 

<-
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Multiparticle Production 

All particles escaping the nuclear reaction may now be calculated by 

summing terms and allowing Z to approach infinity as 

+ + + + 

~(b,E) = ~l(b,E) + ~2(b,E) + ~3(b,E) + • • • 

+ + + 

+ ~ll(b,E) + ~21(b,E) + ~31(b,E) + • 

The particle production cross section is then given by 

daprod = ~ + 
dE 2~ J ~(b,E)b db 

o 

= ~ airFi(E) + Fil(E)l 
1 

~ 

where the ai for a uniform nuclear model is 

R + 

ai = 2~ ( ~i(b)b db 
o 

(31) 

(32) 

(33) 

The total production cross section is found by integrating (32) over energy 

to obtain 

~ ~ 

a d = ~ a· rF. + F.ll pro f 1 1 1 
(34) 



where 

Eo 
Fi = r F .(E)dE 

E 1 

and 

F. I 
1 

F 

Eo 
= r F. I (E )dE 

. 1 
EF 

It follows from conservation of particles that 

The multiplicity of the transport event as herein approximated is 
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(35) 

(36) 

(37) 

which is an indication that the recoil particles need to be treated in more 

detail since intranuclear cascade codes indicate 2 < m ~ 2.5. 



Proton Production in Nuclear Reaction 

It may be easily shown that the proton production spectrum is 

approximated by 

dO' ZO'''' ... 

11 

~ = ..:::.=...Q}' 0'. rF . (E) + F. (E)l CIt l\a i 1·1 1 
(38) 

where Z is the atomic number and O'p the appropriate proton cross section 

for the projectile. Results of equation (38) are compared with the 

experiments of Wu et ale in figure 1. Quite good agreement is obtained 

at the highest energies (>40 MeV). The low energy portion of the spectrum 

is adversely affected by high order multiple scattering terms adding to the 

production of protons. These terms would be limited in their contributions 

if the bulk binding potential are properly treated. A more complete theory 

should improve the agreement. 
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An Appendix of Useful Functions 

Several functions that are closely related to exponential integrals 
, 

and gamma functions are herein defined. 

with special value 

... -Z 
a (Z) = 1 - e o 

and recurrence relation 

A useful integral is 

Z ... 
An(Z) =! an(t)dt 

o 

with special value 

and recu rrence re 1 at ion 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 



Useful functions related to an(Z) are 

A Z .. 
Cn(Z) = ! tetan(t)dt 

o 

with special values 

Z = e - (l+Z) 

and recurrence relations 
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(A7) 

(A8) 

(A9) 

(AID) 

(All ) 

(A12) 

, 
'. 
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Proton Spectra 
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Figure l-Protr~ spectra from proton impact o~ nuclei ~t 90 MeV. 
Short dash is the calculations of Wu et nl.~ long dash is the 
experiments of Wu et ale and the full line is the transport 
theory. 
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