29,294 research outputs found

    Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12

    Full text link
    Explaining the origin of the orbit of 2000 CR105 (a ~ 230AU, q ~ 45AU) is a major test for our understanding of the primordial evolution of the outer Solar System. Gladman et al. (2001) showed that this objects could not have been a normal member of the scattered disk that had its perihelion distance increased by chaotic diffusion. In this paper we explore four seemingly promising mechanisms for explaining the origin of the orbit of this peculiar object: (i) the passage of Neptune through a high-eccentricity phase, (ii) the past existence of massive planetary embryos in the Kuiper belt or the scattered disk, (iii) the presence of a massive trans-Neptunian disk at early epochs which exerted tides on scattered disk objects, and (iv) encounters with other stars. Of all these mechanisms, the only one giving satisfactory results is the passage of a star. Indeed, our simulations show that the passage of a solar mass star at about 800 AU only perturbs objects with semi-major axes larger than roughly 200 AU to large perihelion distances. This is in good agreement with the fact that 2000 CR105 has a semi-major axis of 230AU and no other bodies with similar perihelion distances but smaller semi-major axes have yet been discovered. The discovery of 2003 VB12, (a=450AU, q=75AU) announced a few days before the submission of this paper, strengthen our conclusions.Comment: AJ submitted. 27 pages, 6 figure

    Development of an adaptive window-opening algorithm to predict the thermal comfort, energy use and overheating in buildings

    Get PDF
    This investigation of the window opening data from extensive field surveys in UK office buildings demonstrates: 1) how people control the indoor environment by opening windows; 2) the cooling potential of opening windows; and 3) the use of an ‘adaptive algorithm’ for predicting window opening behaviour for thermal simulation in ESP-r. It was found that when the window was open the mean indoor and outdoor temperatures were higher than when closed, but show that nonetheless there was a useful cooling effect from opening a window. The adaptive algorithm for window opening behaviour was then used in thermal simulation studies for some typical office designs. The thermal simulation results were in general agreement with the findings of the field surveys. The adaptive algorithm is shown to provide insights not available using non adaptive simulation methods and can assist in achieving more comfortable, lower energy buildings while avoiding overheating

    Comfort driven adaptive window opening behaviour and the influence of building design

    Get PDF
    It is important to understand and model the behaviour of occupants in buildings and how this behaviour impacts energy use and comfort. It is similarly important to understand how a buildings design affects occupant comfort, occupant behaviour and ultimately the energy used in the operation of the building. In this work a behavioural algorithm for window opening developed from field survey data has been implemented in a dynamic simulation tool. The algorithm is in alignment with the proposed CEN standard for adaptive thermal comfort. The algorithm is first compared to the field study data then used to illustrate the impact of adaptive behaviour on summer indoor temperatures and heating energy. The simulation model is also used to illustrate the sensitivity of the occupant adaptive behaviour to building design parameters such as solar shading and thermal mass and the resulting impact on energy use and comfort. The results are compared to those from other approaches to model window opening behaviour. The adaptive algorithm is shown to provide insights not available using non adaptive simulation methods and can assist in achieving more comfortable and lower energy buildings

    Developing a partcipatory approach to seed production and varietal selection

    Get PDF
    The performance of UK winter wheat varieties was tested under organic conditions involving farmer participation. Three breadmaking varieties (Hereward, Solstice and Xi19) and their mixture (1:1:1) were grown at 19 UK farms in 2003/04 and 2004/05. The variability of productivity on organic farms was illustrated with more variation among farm sites than among varieties. Seed health was generally high over all sites. Although the trials were successful, more time was needed at project initiation to improve farmer involvement. Some farmers expected more researcher visits, and were reticent about assessing the trials themselves. In contrast, some participants valued the variety performance data on their farms particularly when related to that of other growers. The balance between the goals of the researchers relative to the farmers needs to be defined at project initiation

    Nonlocal First-Order Hamilton-Jacobi Equations Modelling Dislocations Dynamics

    Get PDF
    We study nonlocal first-order equations arising in the theory of dislocations. We prove the existence and uniqueness of the solutions of these equations in the case of positive and negative velocities, under suitable regularity assumptions on the initial data and the velocity. These results are based on new L1L^1-type estimates on the viscosity solutions of first-order Hamilton-Jacobi Equations appearing in the so-called ``level-sets approach''. Our work is inspired by and simplifies a recent work of Alvarez, Cardaliaguet and Monneau

    Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo

    Get PDF
    Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes

    Condensation of magnons and spinons in a frustrated ladder

    Get PDF
    Motivated by the ever-increasing experimental effort devoted to the properties of frustrated quantum magnets in a magnetic field, we present a careful and detailed theoretical analysis of a one-dimensional version of this problem, a frustrated ladder with a magnetization plateau at m=1/2. We show that even for purely isotropic Heisenberg interactions, the magnetization curve exhibits a rather complex behavior that can be fully accounted for in terms of simple elementary excitations. The introduction of anisotropic interactions (e.g., Dzyaloshinskii-Moriya interactions) modifies significantly the picture and reveals an essential difference between integer and fractional plateaux. In particular, anisotropic interactions generically open a gap in the region between the plateaux, but we show that this gap closes upon entering fractional plateaux. All of these conclusions, based on analytical arguments, are supported by extensive Density Matrix Renormalization Group calculations.Comment: 15 pages, 15 figures. minor changes in tex

    Octahedral tilting, monoclinic phase and the phase diagram of PZT

    Full text link
    Anelastic and dielectric spectroscopy measurements on PZT close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight in some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarisation and therefore cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ~ 0.1, at a temperature T_IT higher than the well established boundary T_T to the phase with tilted octahedra. It is proposed that around T_IT the octahedra start rotating in a disordered manner and finally become ordered below T_T. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of T_T(x) below x = 0.18 would be a consequence of the partial relieve of the mismatch between the cation radii with the initial stage of tilting below T_IT.Comment: submitted to J. Phys.: Condens. Matte

    Deconfined Fermions but Confined Coherence?

    Full text link
    The cuprate superconductors and certain organic conductors exhibit transport which is qualitatively anisotropic, yet at the same time other properties of these materials strongly suggest the existence of a Fermi surface and low energy excitations with substantial free electron character. The former of these features is very difficult to account for if the material possesses three dimensional coherence, while the latter is inconsistent with a description based on a two dimensional fixed point. We therefore present a new proposal for these materials in which they are categorized by a fixed point at which transport in one direction is not renormalization group irrelevant, but is intrinsically incoherent, i.e. the incoherence is present in a pure system, at zero temperature. The defining property of such a state is that single electron coherence is confined to lower dimensional subspaces (planes or chains) so that it is impossible to observe interference effects between histories which involve electrons moving between these subspaces.Comment: 31 pages, REVTEX, 3 eps figures, epsf.tex macr
    • …
    corecore