148 research outputs found

    Measuring impairments of functioning and health in patients with axial spondyloarthritis by using the ASAS Health Index and the Environmental Item Set : translation and cross-cultural adaptation into 15 languages

    Get PDF
    Introduction: The Assessments of SpondyloArthritis international society Health Index (ASAS HI) measures functioning and health in patients with spondyloarthritis (SpA) across 17 aspects of health and 9 environmental factors (EF). The objective was to translate and adapt the original English version of the ASAS HI, including the EF Item Set, cross-culturally into 15 languages. Methods: Translation and cross-cultural adaptation has been carried out following the forward-backward procedure. In the cognitive debriefing, 10 patients/country across a broad spectrum of sociodemographic background, were included. Results: The ASAS HI and the EF Item Set were translated into Arabic, Chinese, Croatian, Dutch, French, German, Greek, Hungarian, Italian, Korean, Portuguese, Russian, Spanish, Thai and Turkish. Some difficulties were experienced with translation of the contextual factors indicating that these concepts may be more culturally-dependent. A total of 215 patients with axial SpA across 23 countries (62.3% men, mean (SD) age 42.4 (13.9) years) participated in the field test. Cognitive debriefing showed that items of the ASAS HI and EF Item Set are clear, relevant and comprehensive. All versions were accepted with minor modifications with respect to item wording and response option. The wording of three items had to be adapted to improve clarity. As a result of cognitive debriefing, a new response option 'not applicable' was added to two items of the ASAS HI to improve appropriateness. Discussion: This study showed that the items of the ASAS HI including the EFs were readily adaptable throughout all countries, indicating that the concepts covered were comprehensive, clear and meaningful in different cultures

    Myc depletion induces a pluripotent dormant state mimicking diapause

    Get PDF
    Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.This work was supported by the FOR2033 and SFB873 funded by the Deutsche Forschungsgemeinschaft (DFG), the Dietmar Hopp Foundation (all to A.T.), and the Wellcome Trust (to A.S.)

    The Cytosolic Protein G0S2 Maintains Quiescence in Hematopoietic Stem Cells

    Get PDF
    Bone marrow hematopoietic stem cells (HSCs) balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G0/G1 switch gene 2 (G0S2) are enriched in lineage− Sca-1+ c-kit+ (LSK) CD150+ CD48− CD41− cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150+ CD48− cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150+ CD48−) and progenitor cells (LS−K). Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150+ CD48− cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus

    Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.)

    Get PDF
    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT–PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain

    KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    Get PDF
    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions

    Inactivation of a Single Copy of Crebbp Selectively Alters Pre-mRNA Processing in Mouse Hematopoietic Stem Cells

    Get PDF
    Global expression analysis of fetal liver hematopoietic stem cells (FL HSCs) revealed the presence of unspliced pre-mRNA for a number of genes in normal FL HSCs. In a subset of these genes, Crebbp+/− FL HSCs had less unprocessed pre-mRNA without a corresponding reduction in total mRNA levels. Among the genes thus identified were the key regulators of HSC function Itga4, Msi2 and Tcf4. A similar but much weaker effect was apparent in Ep300+/− FL HSCs, indicating that, in this context as in others, the two paralogs are not interchangeable. As a group, the down-regulated intronic probe sets could discriminate adult HSCs from more mature cell types, suggesting that the underlying mechanism is regulated with differentiation stage and is active in both fetal and adult hematopoiesis. Consistent with increased myelopoiesis in Crebbp hemizygous mice, targeted reduction of CREBBP abundance by shRNA in the multipotent EML cell line triggered spontaneous myeloid differentiation in the absence of the normally required inductive signals. In addition, differences in protein levels between phenotypically distinct EML subpopulations were better predicted by taking into account not only the total mRNA signal but also the amount of unspliced message present. CREBBP thus appears to selectively influence the timing and degree of pre-mRNA processing of genes essential for HSC regulation and thereby has the potential to alter subsequent cell fate decisions in HSCs

    Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of diabetes is increasing worldwide. It has been long known that increased rates of inflammatory diseases, such as obesity (OBS), hypertension (HT) and cardiovascular diseases (CVD) are highly associated with type 2 diabetes (T2D). T2D and/or OBS can develop independently, due to genetic, behavioral or lifestyle-related variables but both lead to oxidative stress generation. The underlying mechanisms by which theses complications arise and manifest together remain poorly understood. Protein-protein interactions regulate nearly every living process. Availability of high-throughput genomic data has enabled unprecedented views of gene and protein co-expression, co-regulations and interactions in cellular systems.</p> <p>Methods</p> <p>The present work, applied a systems biology approach to develop gene interaction network models, comprised of high throughput genomic and PPI data for T2D. The genes differentially regulated through T2D were 'mined' and their 'wirings' were studied to get a more complete understanding of the overall gene network topology and their role in disease progression.</p> <p>Results</p> <p>By analyzing the genes related to T2D, HT and OBS, a highly regulated gene-disease integrated network model has been developed that provides useful functional linkages among groups of genes and thus addressing how different inflammatory diseases are connected and propagated at genetic level. Based on the investigations around the 'hubs' that provided more meaningful insights about the cross-talk within gene-disease networks in terms of disease phenotype association with oxidative stress and inflammation, a hypothetical co-regulation disease mechanism model been proposed. The results from this study revealed that the oxidative stress mediated regulation cascade is the common mechanistic link among the pathogenesis of T2D, HT and other inflammatory diseases such as OBS.</p> <p>Conclusion</p> <p>The findings provide a novel comprehensive approach for understanding the pathogenesis of various co-associated chronic inflammatory diseases by combining the power of pathway analysis with gene regulatory network evaluation.</p

    Boundary work: An interpretive ethnographic perspective on negotiating and leveraging cross-cultural identity

    Get PDF
    The complexity of global organizations highlights the importance of members’ ability to span diverse boundaries that may be defined by organization structures, national borders, and/or a variety of cultures associated with organization, nation-based societal and work cultures, industries, and/or professions. Based on ethnographic research in a Japan–US binational firm, the paper describes and analyzes the boundary role performance of the firm\u27s Japanese members. It contributes toward theory on boundary spanning by introducing a “cultural identity negotiation” conceptual framework. We show boundary spanning as a process shaped through the interplay of the contextual issues that make a boundary problematic; an individual\u27s multiple repertoires of cultural knowledge; and the individual boundary spanner\u27s “negotiation”, through interaction with others, of his/her cultural identities – the sense of “who I am” as a cultural being that is fundamental to an individual\u27s self-concept. At the same time, we make transparent the epistemological and methodological foundations of an interpretive ethnographic approach, demonstrating its value for understanding complex organizational processes. Research findings have practical implications for the selection and training of an organization\u27s employees, particularly of persons who may be considered “bicultural”

    FoxO and Stress Responses in the Cnidarian Hydra vulgaris

    Get PDF
    Background: In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings: We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions: These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians an

    HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier?

    Get PDF
    The acquired immunodeficiency syndrome (AIDS) is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis
    corecore