273 research outputs found

    Undergraduate Curriculum in Software Engineering

    Get PDF

    Resistivity peak values at transition between fractional quantum Hall states

    Full text link
    Experimental data available in the literature for peak values of the diagonal resistivity in the transitions between fractional quantum Hall states are compared with the theoretical predictions. It is found that the majority of the peak values are close to the theoretical values for two-dimensional systems with moderate mobilities.Comment: 3 pages, 1 figur

    Nuclear Anapole Moments

    Get PDF
    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent SPS-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ``reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.Comment: 53 pages; 10 figures; revtex; submitted to Phys Rev

    Beam energy dependent two-pion interferometry and the freeze-out eccentricity of pions in heavy ion collisions at STAR

    Get PDF
    We present results of analyses of two-pion interferometry in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mTm_{T}) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.Comment: 27 pages; 27 figure

    Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, ALLA_{LL}, in polarized pppp collisions at center-of-mass energy s=200\sqrt{s}=200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC pppp data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-xx region x>0.05x>0.05.Comment: 7 pages, 3 figure

    Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    Get PDF
    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.Comment: 6 pages, 4 figures, accepted by Phys. Rev. Lett (more model comparisons have been added in version 2

    Observation of D0D^0 meson nuclear modifications in Au+Au collisions at sNN\sqrt{s_{_{\mathrm{NN}}}} = 200 GeV

    Full text link
    We report the first measurement of charmed-hadron (D0D^0) production via the hadronic decay channel (D0K+π+D^0\rightarrow K^- + \pi^+) in Au+Au collisions at sNN\sqrt{s_{_{\mathrm{NN}}}} = 200\,GeV with the STAR experiment. The charm production cross-section per nucleon-nucleon collision at mid-rapidity scales with the number of binary collisions, NbinN_{bin}, from pp+pp to central Au+Au collisions. The D0D^0 meson yields in central Au+Au collisions are strongly suppressed compared to those in pp+pp scaled by NbinN_{bin}, for transverse momenta pT>3p_{T}>3 GeV/cc, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pTp_{T} is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.Comment: 7 pages including author list, 4 figures, submit to PRL with revised versio

    Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC

    Full text link
    We report measurements of single- and double- spin asymmetries for W±W^{\pm} and Z/γZ/\gamma^* boson production in longitudinally polarized p+pp+p collisions at s=510\sqrt{s} = 510 GeV by the STAR experiment at RHIC. The asymmetries for W±W^{\pm} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the WW mass. The results are compared to theoretical predictions, constrained by recent polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05<x<0.20.05<x<0.2.Comment: 7 pages, 5 figures, Submitted to Physical Review Letters; replaced with published versio
    corecore