
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

4-2-1990

Undergraduate Curriculum in Software Engineering Undergraduate Curriculum in Software Engineering

Harlan D. Mills

J. R. Newman

C. B. Engle, Jr.

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Mills, Harlan D.; Newman, J. R.; and Engle, Jr., C. B., "Undergraduate Curriculum in Software Engineering"
(1990). The Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/33

This Conference Proceeding is brought to you for free and open access by the Science Alliance at TRACE:
Tennessee Research and Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by
an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please
contact trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268735094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

I
I
I
\
I .

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

423

Lionel E. Deimel (Ed.)

Software Engineering
Education
SEI Conference 1990
Pittsburgh, Pennsylvania, USA, April 2-3, 1990
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

CONTENTS

KEYNOTE ADDRESS:

Instilling Professionalism in Software Engineers
David Gries, Cornell University ... 1

PAPERS:

Establishing Motorola-University Relationships: A
Software Engineering Training Perspective ... 2

George Sanders and George Smith, Motorola Inc.

Technology Transfer: The Design, Development, and
Implementation of a Process .. 13

Rebecca L. Smith, Hewlett-Packard Co.

An Undergraduate Curriculum in Software Engineering ... 24
Harlan D. Mills, J. R. Newman, and C. B. Engle, Jr., Florida Institute
ofTechnology

An Undergraduate Programme in Software Engineering ... 38
M. F. Bott, University College ofWales

An Undergraduate Software Engineering Major Embedded
in a Computer Systems Engineering Degree .. 49

K. Reed and T. S. Dillon, LaTrobe University

Introduction of Software Engineering Concepts in an
Ada-Based Introductory Computer Science Course .. 67

Frances L. VanScoy, West Virginia University

Teaching Reuse Early ... 77
Viswa Santhanam, Boeing Military Airplanes

A State-of-the-Art CS Undergraduate Lab •.•...........•... 85
J. Mack Adams and Barry L. Kurtz, New Mexico State University

--Star Lite-- A Software Education Laboratory .. 95
Robert P. Cook and Lifeng Hsu, University of Virginia

Modeling Teamwork in an Academic Environment .. 110
J.P. Jacquot and J. Guyard, Universite de Nancy I
L. Boidot, CEGELECIRED

An Experience of Teaching Concurrency:
looking back, looking forward ... 123

David Bustard, Queen's University, Belfast

Use-Perspective Unit Documentation .. 136
Frank A. Cioch and Fatma Mili, Oakland University

An Undergraduate Curriculum in Software Engineering

H. D. Hills, J. R. Newman, c. B. Engle, Jr.
Florida Institute of Technology

Abstract

Software development and maintenance is only a human generation
old, but is already practiced widely in government, business,
and university operations on a trial and error, heuristic basis
that is typical in such a new human activity. The term software
engineering is also widely used as a commercial buzzword for
marketing short courses and tools for specific heuristic
approaches to software development and maintenance. But
legitimate engineering processes, such as found in civil,
mechanical, or electrical engineering, have foundations in
mathematics and science that require four year university
curricula, not three day short courses. Foundations in
mathematics and computer science are just reaching the point
where legitimate undergraduate engineering curricula are
possible for software engineering. Florida Institute of
Technology (FIT) plans to develop an undergraduate software
engineering curriculum to provide students with new capabilities
and standards for software development, evolution, and
maintenance.

Software Goes Critical

This 'first generation' of consumers or users have encountered
great frustration in dealing with the products of this human
activity in software development. With all the people involved,
with all the critical uses of software in both commercial and
military operations, it is hard to remember that software
development is only a human generation old. When civil
engineering was a human generation old, the right triangle was
yet to be invented. When accounting was a human generation old,
double entry was yet to be invented. There are many more people
in software in its first~ generation than there were in civil
engineering or accounting in their first generations. But
fundamental ideas still take time to discover and develop, and
the very number of people in software today creates a massive
intellectual inertia to make good use of fundamental ideas as
they appear.

Typically, plans and schedules are easy to make for writing the
software. The problem is in getting the software to work at
all, and to do the right thing when it does work. Software has
turned out to be more complex than it first appears. Twenty
line programs, even hundred line programs in school problems
don't seem hard. But twenty thousand lines of software, let
alone a hundred thousand or million lines of software is quite

25

a different matter. First many people will be writing small
parts, a few hundred or thousand lines, which may work by
themselves quite well. And some such parts may be written years
later than others by complete strangers to earlier authors. But
these parts must all work together, with no common sense run
time help from their authors. That's where the complexity comes
in.

So realistic development schedules involves engineering the
software to execute in a completely reliable way under all
circumstances. There is not enough time to build such software
by trial and error. It needs to be engineered, with engineering
checks and balances, dictated by an engineering discipline,
complete with engineering inspections of work in progress. In
fact, such engineering has been demonstrated in large systems
in meeting schedules and budgets. For example in both the NASA
space shuttle system (over 100 million bytes) and the Navy LAMPS
helicopter and ship system (over 10 million words), every
delivery over a four year period was on time and under budget
(Mills 80]. But human society and institutions have had no long
term, orderly experience or expectations in this engineering
discipline because of the short time it has been needed.

The Role of Universities in Software Engineering

The current role of universities in software engineering is also
in its infancy. During the present human generation,
universities have begun to do research in and teach computer
science. As a result, many universities now have computer
science departments, which may be located in liberal arts,
science, or engineering divisions. Such computer science
departments teach computer programming and software system
development as part of the computer science curriculum, but
seldom teach computer programming as an engineering discipline.
They seldom teach software maintenance or evolution in a serious
way, even though that is what most of their graduates will be
asked to do. There are many interesting approaches to teaching
computer programming, using graphics, logic, text formats, but
it is such a new human activity that there is still much to
learn and be sorted out.

The next need is to move from computer science as a base into
software engineering, just as more mature engineering
disciplines have used sciences and mathematics as their
foundations. The 1989 SEI Workshop on an Undergraduate Software
Engineering Curriculum [Gibbs 89] pulled together much of the
current thinking on the subject. This Workshop sponsored a set
of position statements about the needs and pitfalls of putting
a software engineering curriculum into place. [Deimel 89] makes
the point that computer programming is, indeed, an important
part of software engineering, and yet is not treated as
seriously as it should be "under the assumption that entering
students already know what they need to know about programming. "

26

[Engle 89] discusses the difference between computer science and
software engineering, noting that "software for large systems
must be developed in a fundamentally different manner than
software for small systems." [Ford 89] points out that a
software engineering curriculum distinct from computer science
is inevitable, but that change is slow and difficult in
universities. That change has been difficult already in moving
computer science into universities at the expense of established
departments.

[Van Scoy 89] describes a specific plan for an undergraduate
software engineering curriculum within an existing computer
science program. The plan is described in five steps, namely:
1. Change the programming language taught to entering students
(to a language which supports software engineering such as Ada);
2. Revise the sequence of courses taken by all freshman and
sophomore computer science majors; 3. Add software engineering
electives to the computer science major at the junior and senior
levels; 4. Split the current computer science major into two
tracks; 5. Develop distinct BS CS and BS SE programs. VanScoy
discusses a specific proposal for CSl [Denning 88] using Ada "to
facilitate the teaching of some software engineering ideas
subtly and early . " This proposal revolves around Ada packages
at the outset, first in using packages, second in designing and
implementing packages, then finishing with an introduction to
Ada tasks. Most of Ada is introduced in the package framework,
rather than beginning with procedures and functions before
advancing to packages.

[Gibbs 89a] emphasizes the need for computer science
fundamentals in undergraduate software engineering, outlining
a model curriculum with two years each in Core Computer Science,
Mathematics, Software Engineering, and Computer Science. At
FIT, our plan is similar in some ways to that discussed in Van
Scoy, but even closer to the model curriculum given by Gibbs.
As Van Scoy suggests, we plan to evolve a software engineering
curriculum within a computer science program. And as Gibbs
recommends, we will begin with two years each in Core Computer
Science and Mathematics, then finish with two years each in
Software Engineering and Computer Science much in the spirit of
the Gibbs model curriculum.

As a practical matter, we view Software Engineering as the
necessary preparation for the practicing, software development
and maintenance professional. The Computer Scientist is
preparing for further theoretical studies or specializing in
one of the many sub-disciplines such as graphics, artificial
intelligence, etc.

Our approach takes its roots in the Denning report [Denning 88].
In addition we have been influenced by the curriculum report
on software engineering made by the British Computer Society and
Institution of Electrical Engineers [BCS/IEE 89]. Our approach
to defining the curriculum for Software engineering is still

27

developing, with our major emphasis at this time being devoted
to the first two years.

Starting Right at the Freshman/Sophomore Level

In such a young subject as computer science or software
engineering, many topics in graduate school are there because
they are recent in origin, not more complex . Certainly our
current students should not have to complete an undergraduate
degree, spend some time working in the real world encountering
the wrong way to create software, then return for a graduate
degree before we teach them the right way to do software
engineering. For example, we believe that the SEI Report on
Graduate Software Engineering Education [Ardis 89] provides a
good background for future undergraduate curriculum planning.
The material and objectives presented in this report, seems
natural to migrate down to the upper undergraduate levels as
they become better articulated and agreed upon by the software
engineering community. However, we expect to migrate the more
formal topics of today's graduate software engineering programs
right down to the freshman/sophomore levels.

In fact, the challenge in many science and engineering areas has
always been to find simpler rigorous ideas more powerful than
early heuristic ideas born out of immediate practice. For
example, in mathematics, ordinary arithmetic preceded group
theory, then set theory, by hundreds of years. Sets are simple
and powerful, but took much human time to discover for effective
use. In computer science today, the simple mathematical ideas
have also arrived later than the initial practical heuristic
ideas about program design. But we believe we can start
university students learning the necessary engineering
fundamentals to create correct and efficient software. This is
possible through the use of mathematical foundations just
because those foundations are simple, easily understood
mathematical ideas in sets, functions, relations, not even
requiring numbers in any necessary way.

We plan to create freshman/sophomore course work to introduce
computer programs as mathematical objects from the start, with
their expressions and analyses in programming languages as
integral parts of the concept. A computer program is a rule for
a mathematical function that maps a set of initial states to
their final states. This course work is not about writing
programs by trial and error. It is about the mathematical
derivation of programs as rules for functions from formal
specifications, which are mathematical relations or functions
themselves.

We plan to make Ada the primary undergraduate curriculum
programming language, even though other programming languages
will be taught. However, the point of Ada as a programming
language is its use to describe rules for mathematical functions
that can be analyzed for correctness and performance with

28

mathematical rigor. Other languages, such as assembly
languages, Fortran, etc. can also be used to describe rules for
these mathematical functions, as well. This shift from viewing
programs as step by step instructions to computers (which they
certainly are) to a new form of function rules brings
mathematical rigor and engineering discipline into direct focus.

Ada as the Base Undergraduate Programming Language

Ada offers many advantages as a base language for the
curriculum. It is rich enough to be useful for most programming
concepts; it is a practical language, ·finding widespread
acceptance in government, and thus, industry.

Ada is the first programming language which was "engineered" to
support software engineering. Ada was not an evolutionary
language
where new features were added to an existing shell. Rather, the
Ada language was designed as any other software product. This
effort was initiated by soliciting and obtaining a series of
requirements for the new language. These requirements were
refined by widespread public review into a set of specifications
upon which a design could be developed. This preliminary design
was also given widespread review and a final design for the
language was approved, before any implementations of the
language existed. This was a novel concept in the design of
programming languages; obtain consensus on the requirements
before implementing it! This shows that Ada was designed and
engineered to perform specific functions, prominent among them
was the support of software engineering concepts.

The concepts which Ada was expressly designed to support include
abstraction, information hiding, localization, completeness,
modularity, reliability, maintainability, reusability, and
extendibility, among others. This list gives credence to the
claim that the design of Ada was intended to support modern
software engineering concepts and practices as we understood
them. Arguably, the implementation of the language manifest in
numerous compilers on numerous machine configurations, provides
the much needed support for software engineering that has been
missing in older languages.

The support of modern software engineering practices and
concepts is very important. If a language is very rich in
expressiveness, then it becomes less difficult and less error
prone to translate the problem to be solved from the design
space to the solution space. If the language is somewhat
limited or constrained in its expressive power, then the mapping
from the design space to solution space is more difficult. For
example, if the design of a solution to the problem at hand
conceptually requires the concept of parallelism, then if the
language in which the design is being implemented supports
parallelism, this portion of the solution can be directly mapped

29

=rom the design to the implementation. If, on the other hand,
your language does NOT support parallelism, then you must
serialize your conceptual parallelism, which means that you must
.:.ntroduce additional complexity into the implementation to
~chieve the effect of your design. This necessarily perturbs
~e design and makes maintenance more difficult. In summary,
~he more powerful the language in terms of expressiveness, the
-ore easily you can map the design to the implementation without
~traducing additional complexity.

:n view of the foregoing, the rich set of constructs and
programming expressiveness available in Ada make it the logical
choice for our curriculum. While some may argue that the
language is "too big" or too complex" for freshmen, we take the
opposite view. We need only acquaint the student with that
portion of the language which is necessary for them to solve the
problems that we provide. In time, this will be the full
language. What we obtain from this is the ability to go from
simple sequential concepts to more complex ideas such as
parallelism or genericity without having to transition the
student from a smaller, less powerful language to Ada. They
will have been using the same language since the first
programming assignment!

Freshman/Sophomore Strategy

At a more general level, we see freshman/sophomore course work
dealing with two main areas of core computer science, namely:

Base Knowledge
Computer Operations
Computer Programming Languages
Data/Text Processing and Storage

Base Skills
Program Analysis/Design
Algorithm Analysis/Design
Formal Syntax/Semantics Methods
Data Structures/Access Methods
Systems Analysis/Design

We regard the Base Skills as mathematics skills in the computer
domain, as illustrated above with programs viewed as rules for
mathematical functions.

FIT is on a quarter basis. We plan to organize the
freshman/sophomore course work in the following sequence:

Quarter 1
Program Analysis/Design in Characters/Sequences
Formal Syntax/Semantics of Sequential Programs

30

Quarter 2
Program Extensions to Integers/Arrays/Records
Algorithm Performance Analysis/Design

Quarter 3
Program Extensions to Reals/Data Abstractions
Formal Syntax/Semantics of Program Modules

Quarter 4
Programming Languages/Assembler and High Level
Generic Extensions to Programming Languages

Quarter 5
Program Extensions to Concurrent Execution
Concurrent Algorithm Analysis/Design

Quarter 6
Program Extensions to Real Time Systems
Real Time Algorithm Analysis/Design

Since the subject contents of these courses do not follow a
traditional grouping, we need to prepare much of the material
ourselves. The contents of the freshman/sophomore stream of
quarter courses will be organized for convenient use in a stream
of semester courses in other universities.

It may be of interest to compare this sequence of contents with
that of [VanScoy 89]. VanScoy plans to introduce most of Ada
in the first semester, certainly packages and tasks, in order
to bring more realism into the course. "A relatively small unit
on tasking is included in the first course in the belief that
students bring to CSl a view of the world that is essentially
concurrent" [VanScoy 89]. In the sequence planned above, Ada
packages are not introduced until Quarter 3, Ada tasking until
Quarter 5. Although Ada is the underlying programming language
in both cases, the sequence of development is quite different.
There are certainly many merits to Van Scoy's approach.

Our approach teaches mathematical foundations first, with
programming languages used to express engineering designs based
on mathematical reasoning. Those mathematical foundations take
time to develop and understand. For example, in the FIT plan,
the only data introduced in Quarter 1 is characters and
sequences of characters, but formal syntax, semantics, and
proofs of program correctness are fully developed for this
simple data. Characters and sequences correspond to ruler and
compass constructions in geometry, where mathematical proofs can
be introduced in relatively simple contexts. But characters and
sequences are fully capable of defining any operations possible
in programmed computers, such as sorting, searching, or adding
hundred digit numbers! Once such fundamentals are understood,
integers, arrays, and records are introduced in Quarter 2, reals
and data abstractions (Ada packages) in Quarter 3, in each case
with expanded proof rules to deal with mathematical correctness.

31

Such an approach for the programming language Pascal appears in
[Mills 87], a two semester text that develops formal syntax,
semantics, and program correctness in characters and files in
the first semester before introducing numbers and other data
aggregates.

Freshman/Sophomore Coursework Contents

The new freshman/sophomore coursework at FIT is planned for
introduction in 1990/91/92, the freshman coursework in 1990/91,
the sophomore coursework in 1991/92.

A new text in two volumes is needed for the mainline material
on Base Skills in the freshman/sophomore coursework beginning
in 1990/91. Volume I (needed 1990/91) will introduce sequential
programs and modules as mathematical objects for engineering
analysis and design. Volume II (needed 1991/92) will continue
with programming generics, concurrent, and real time programs
and modules as mathematical objects for more complex engineering
analysis and design.

Volume I will introduce sequential programs and modules as rules
for mathematical functions, using the sequential parts of the
Ada programming language. Volume II will continue the
mathematical treatment of generic, concurrent and real time
programs and modules, using the remainder of the Ada programming
language. Program analysis and design thereby become
mathematics based software engineering with a well defined
language of application in Ada.

In more detail, the freshman/sophomore mainline coursework is
planned in the following sequence:

Quarter 1

Program Analysis/Design in Characters/Sequences
Sets, relations, functions, predicates. Programs
with boolean and character data and sequential
files. Programs as rules for mathematical
functions. Structured programs as expressions in
an algebra of functions. Program specifications
as mathematical relations or functions. Program
correctness between a specification relation and
a program function. Program design as creating
rules for functions to meet specification
relations.

Formal Syntax/Semantics of Sequential Programs
Formal syntax and semantics for structured
programs with boolean and character data and
sequential files. BNF for context free syntax.
Uses of BNF in program specification and design.

32

Quarter 2

Program Extensions to Integers/Arrays/Records
Extension of scalar data to integers and their use
in program analysis and design. Introduction of
aggregate data in arrays, records and their use in
program analysis and design. All language
extensions in both formal syntax and formal
semantics.

Algorithm Performance Analysis/Design

Quarter 3

Analysis and design of algorithm performance in
both time and space requirements as well as
correctness. Understanding and creating high
performance at machine levels as well as
programming language levels.

Program Extensions to Reals/Data Abstractions
Extension of scalar data to reals and their use in
program analysis and design. Roundoff errors and
algorithm design to contain and minimize problems
of numerical approximation. Introduction of data
abstractions for program modules of procedures and
retained data. Data abstractions as state
machines defined by transition functions with
rules defined by the procedures.

Formal Syntax/Semantics of Program Modules

Quarter 4

Formal definitions of modules in both syntax and
semantics as extensions of programs. Extension of
program correctness to module correctness.
Relation to object oriented design/development.

Programming Languages/Assembler and High Level
General properties and possibilities in assembler
and high level programming languages. Translation
between programming languages. Performance
analyses on constraints of programming languages.

Generic Extensions to Programming Languages
Bases for more general, reusable programs and
modules through use of programming generics and
subsequent automatic development of specific
designs by defining parameters.

33

Quarter 5

Program Extensions to Concurrent Execution
Addition of concurrency to program and module
design with potential nondeterminism in execution
that converts functional behavior to relational
behavior. Extension of program and module
correctness with relational behavior.

Concurrent Algorithm Analysis/Design

Quarter 6

Analysis and design of concurrent algorithm
performance in both time and space requirements as
well as correctness. Understanding and optimizing
concurrent performance at machine levels as well
as programming language levels.

Program Extensions to Real Time Systems
Addition of real time behavior to program and
module design with potential nondeterminism in
real time execution that converts functional
behavior to relational behavior in time .
Extension of concurrent program and module
correctness to real time behavior.

Real Time Algorithm Analysis/Design
Analysis and design of real time algorithm
performance in both time and space requirements as
well as correctness. Understanding and optimizing
performance in real time at machine levels as well
as programming language levels.

Filling out the Undergraduate Curriculum

In our vision, the upper level coursework for undergraduate
software engineering can be divided into three categories:

Junior/Senior Coursework

Programming Language Translators
Assemblers/Linkers/Loaders
Compilers/Interpreters

Base Systems
Operating Systems
Data Base Systems
Real Time Systems
Network Systems
Graphics Systems

34

Advanced Skills
Large Scale Systems Maintenance
Large Scale Systems Development
Statistical Quality Control of Software Production
Information Systems
Artificial Intelligence
Law and Ethics

Our plan is to evolve the Junior/Senior coursework more
deliberately, beginning 1992-93, from current offerings in
computer science, with a new emphasis on both maintenance and
development in large scale systems [Linger 88], statistical
quality control [Mills 87a].

We expect to provide software engineering undergraduates with
entirely new capabilities and standards in large software
systems. These capabilities will stem from disciplined software
engineers operating in concert in well disciplined teams with
common methods. The mathematical basis in programming from the
freshman/sophomore work will lead to new expectations in high
performance, zero defect software to system specification. Zero
defect software, in contrast with defect prone software expected
and condoned in today's widespread heuristic methods, is very
possible. For example, the 1980 Census system of reading,
assembling, and communicating data from marked Census
questionnaires to a central point from twenty geographic
locations ran its entire ten months of operation with zero
defects. This Census system involving over 25 KLOC of software
earned its principal software engineer, Paul Friday, a gold
medal, the highest award of the Department of Commerce [Mills
86]. The IBM Wheelwriter typewriter product, using three micro
processors and 65 KLOC of software has been used by millions
since its introduction in 1984 with zero defect performance
[Mills 86].

Implementation at Florida Institute of Technology

The material presented in these six freshman/sophomore courses
or 30 quarter hours, replaces what has previously been taught
in twelve, traditional three hour courses at the same level.
This introductory sequence, includes the fundamental body of
knowledge any programmer needs to begin correctly and
effectively solving real problems. Thus this becomes not only
the introductory sequence for software engineers, but for all
computer scientist, information systems specialists and to some
degree, computer engineers. During the developmental stages of
this program, we will have all of our Computer Science students
take this sequence. Beginning in the junior year, the student
can, through choosing the appropriate elective courses,

35

specialize in what we call our Software Engineering or
Information Systems options.

Although it will take three years for our first group of SE
majors to complete our introductory sequence, we have already
begun to modify our Junior/Senior courses to strengthen our
software engineering emphasis. In _addition to our existing
courses in operating systems, data bases, compilers, graphics,
artificial intelligence, analysis of algorithms, data
communications, and ethics, we have added specific courses in
large scale systems development, and advanced information
systems analysis and design. Beginning in the fall of 1990 our
present majors will be able to select a software engineering or
information systems option, by choosing the appropriate elective
courses from those we already offer. We intend to introduce
courses in statistical quality control of software production,
real time and distributed systems development and others as we
can develop the necessary course material.

Software Engineering Techniques for Non-Computer Science Majors

If, as we project, this is the proper way to train software
engineers to correctly solve problems using the available
computing resources, it is also necessary to address the needs
of other academic disciplines to introduce their scientists,
engineers, businessmen etc. to these new techniques. We accept
the premise that in developing large scale computer based
systems, a team of specialists will be involved. In this
environment it is reasonable to expect a greater depth of
knowledge of the software engineering techniques by the software
specialists. We recognize, however, that as problem solving
using computers continues to pervade every academic discipline,
we have an obligation to distill the essence of software
engineering into a sequence of service courses for other
disciplines. It is our plan to develop such a series of service
courses based on our experience with our Freshman/Sophomore
sequence.

Conclusions

The Computer Science Department at the Florida Institute of
echnology will incrementally introduce a software engineering

undergraduate degree, beginning in the fall of 1990. The
curriculum will emphasize mathematical derivation of programs
from formal specifications, which are mathematical objects
themselves. From this formal basis the analysis, design and
implementation of systems, programs and component modules will
be developed. Ada will be used as the common basis because of
its valuable properties and future widespread use. Upon this
=ormal foundation, topics in software architecture, computer
systems, software analysis and development/maintenance process
~echniques will be covered. Optional courses will be available
at the Junior/Senior level to allow specialization. We will

36

investigate the possibility of condensing the initial two year
sequence to serve as service courses to other academic
disciplines.

Once we have established the value and creditability of our
Software Engineering program and have demonstrated the value of
our service courses to other disciplines, we plan to address the
issue of accrediting software engineering as a legitimate field
in the engineering professions.

In summary, we expect future FIT software engineering graduates
to be capable of engineering zero defect software at high
productivity, and, of course, to schedules and budgets as well.
Such engineering performance requires effective management of
a rigorous software engineering process, not simply hoping for
the best from heuristics and good intentions.

References

[Ardis 89] M. Ardis and G. Ford, "SEI Report on Graduate
Software Engineering Education", in [Gibbs 89], pp 208-250

[BCS/IEE 89] The British Computer Society and The Institution
of Electrical Engineers, "A Report on Undergraduate Curricula
for Software Engineering", June 1989

[Deimel 89] L. E. Deimel, "Programming and its Relation to
Computer Science Education and Software Engineering Education",
in [Gibbs 89], pp 253-256

[Denning 88] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder,
A. Tucker, A. J. Turner, and P. R. Young, "Computing as a
Discipline: Final Report of the ACM Task Force on the Core of
Computer Science", ACM Press 1988

[Engle 89] C. B. Engle, Jr., "Software Engineering is not
Computer Science", in [Gibbs 89], pp 257-262

[Ford 89] G. Ford, "Anticipating the Evolution of Undergraduate
Software Engineering Curricula", in [Gibbs 89], pp 263-266

[Gibbs 89] N. E. Gibbs (Ed.), Software Engineering Education,
Lecture Notes in Computer Science, Springer-Verl ag 1989

[Gibbs 89a] N. E. Gibbs, "Is the Time Right for an Undergraduate
Software Engineering Degree?", in [Gibbs 89], pp 271-274

[Linger 88] R. c. Linger and H.
Cleanroom Software Engineering:
Facility, IEEE Compsac 1988

D. Mills, A Case Study in
The IBM COBOL Structuring

37

: Mills 80] H. D. Mills, D. O'Neill, R. C. Linger, M. Dyer, R.
Quinnan, "The Management of Software Engineering", IBM

Systems Journal, V 19, 1980

:Mills 86] H. D. Mills, "Structured Programming: Retrospect and
? respect 11

, IEEE Software, November 19 8 6

:Mills 87] H. D. Mills, V. R. Basili, J.D. Gannon, R. G.
3amlet, Principles of Computer Programming: A Mathematical
Approach, Wm. C. Brown, 1987

:Mills 87a] H. D. Mills, M. Dyer, and R. c. Linger, "Cleanroom
Software Engineering". IEEE Software, September 1987

: van Scoy 89] F. L. Van Scoy, "Developing an Undergraduate
;:,oftware Engineering Curriculum within an Existing Computer
~cience Program", in [Gibbs 89], pp 294-303

:washington Roundup 1989) Aviation Week and Space Technology,
_ebruary 6, 1989, p 17

	Undergraduate Curriculum in Software Engineering
	Recommended Citation

	tmp.1318260011.pdf._ZWe8

