2,645 research outputs found

    OLFAR a radio telescope based on nano satellites in moon orbit

    Get PDF
    It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional” way. The Dutch space-born radio telescope project OLFAR, the Orbiting Low Frequency Array, is a good example of a typical “swarm task”. The OLFAR radio telescope will be composed of an antenna array based on nano-satellites orbiting the moon to shield the receiving nodes from terrestrial interference. The array will receive frequencies in a band from around 30 kHz to 30 MHz. This frequency band is scientifically very interesting, since it will be able to detect signals originating from the yet unseen “Dark Ages” ranging from the Big Bang until around 400 million year after. Another science driver is the LF activity from (exo) planets. In this paper the design parameters for the satellites and the swarm will be given and status of the OLFAR project will be reported. Details will be given about the antenna system, the LF-receiver and the signals that are expecte

    An extensive and autonomous deep space navigation system using radio pulsars

    Get PDF
    Interstellar navigation poses significant challenges in all aspects of a spacecraft. One of them is reliable, low-cost, real-time navigation, especially when there is a considerable distance between Earth and the spacecraft in question. In this paper, a complete system for navigation using pulsar radio emissions is described and analysed. The system uses a pulsar‟s emissions in the radio spectrum to create a novel system capable of fully autonomous navigation. The system is roughly divided into two parts, the front - end and the back - end, as well as their subdivisions. The front - end performs initial signal reception and pre-processing. It applies time-based coherent de-dispersion to allow for low-power on-board processing, and uses a very wide bandwidth to limit the required antenna size. As a result, the electronics required performing the processing is complex, but the system is well limited in both size and power consumption

    A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity

    Get PDF
    Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio

    CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps

    Full text link
    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find that only modes up to a maximum multipole of l_max ~ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.Comment: 14 pages, 14 figures, to be submitted to Ap

    Increased amino acid turnover and myofibrillar protein breakdown in advanced cancer are associated with muscle weakness and impaired physical function

    Get PDF
    Muscle wasting in cancer negatively affects physical function and quality of life. This study investigates amino acid metabolism and the association with muscle mass and function in patients with cancer.In 16 patients with advanced cancer undergoing chemotherapy and 16 healthy controls, we administered an intravenous pulse and prime of stable amino acid tracers. We took blood samples to measure the Rate of appearance (Ra), whole body production (WBP), clearance (Cl), and post absorptive whole body net protein breakdown (WBnetPB). Plasma amino acid concentrations and enrichments were analysed by LC-MS/MS. We assessed muscle mass, handgrip/leg/respiratory muscle strength and reported physical activity, quality of life, and physical function.Muscle strength was lower in cancer patients than in healthy controls. Total and limb muscle mass, reported physical activity and WBnetPB were comparable. WBP and Cl of tau-methylhistidine, leucine, glutamine and taurine were higher in cancer patients as well as glycine Cl. Amino acid metabolism was correlated with low muscle mass, strength, physical function and quality of life.Myofibrillar protein breakdown and production of amino acids involved in muscle contractility are up regulated in patients with cancer undergoing chemotherapy and related to muscle weakness and reduced physical outcomes

    On cultural and macroeconomic contingencies of the entrepreneurial orientation-performance relationship

    Get PDF
    The relationship between entrepreneurial orientation (EO) and firm performance is among the best-researched topics in entrepreneurship research. These studies have been conducted in various national contexts. While a first meta-analysis by Rauch et al. finds no significant difference between EO's effects based on the continent in which the firm is based, the present study considers how national cultural and macroeconomic drivers impact the EO–performance relationship. Building upon 177 studies with data from 41 countries, the meta-analysis consolidates this literature stream, contributing to the evidence-based entrepreneurship research

    Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability

    No full text
    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved

    The Effect of Corporate Support Programs on Employees’ Innovative Behavior: A Cross-Cultural Study

    Get PDF
    This article establishes a theoretical model that sheds light on whether corporate support programs can foster employees’ innovative behavior across nations and which national cultural dimensions moderate this relationship. To validate the arguments empirically, this research consists of two sequential, independent studies. The first study uses secondary data from the 2011 Global Entrepreneurship Monitor special report. Analysis of responses from 11,560 full-time employees in 13 countries shows that the relationship between support and innovative behavior is more positive when the nation's levels of power distance and masculinity are low and individualism is strong. A second experimental study is conducted in Germany and China using employees’ individual behavior as the dependent variable and corporate support programs differentiated into three types of corporate support (providing time, providing budget, and providing advice) as the independent variable. Findings indicate that all three types of corporate support programs positively impact employees’ innovative behavior in the sample from Germany, at least indirectly via feasibility and desirability judgments as mediators, but no significant relationships in the sample from China. This study contributes to the research stream on employees’ innovative behavior and corporate support programs by adding national cultural properties as environmental factors. In addition, this study investigates the mediating effect of feasibility and desirability judgments between three types of corporate support programs and innovative behavior. This study also contributes to innovation research in general and to research on employees’ innovative behavior in particular by building and validating a multilevel model empirically
    • 

    corecore