15 research outputs found

    Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity.

    Get PDF
    Despite the crucial roles of phytohormones in plant development, comparison of the exact distribution profiles of different hormones within plant meristems has thus far remained scarce. Vascular cambium, a wide lateral meristem with an extensive developmental zonation, provides an optimal system for hormonal and genetic profiling. By taking advantage of this spatial resolution, we show here that two major phytohormones, cytokinin and auxin, display different yet partially overlapping distribution profiles across the cambium. In contrast to auxin, which has its highest concentration in the actively dividing cambial cells, cytokinins peak in the developing phloem tissue of a Populus trichocarpa stem. Gene expression patterns of cytokinin biosynthetic and signaling genes coincided with this hormonal gradient. To explore the functional significance of cytokinin signaling for cambial development, we engineered transgenic Populus tremula × tremuloides trees with an elevated cytokinin biosynthesis level. Confirming that cytokinins function as major regulators of cambial activity, these trees displayed stimulated cambial cell division activity resulting in dramatically increased (up to 80% in dry weight) production of the lignocellulosic trunk biomass. To connect the increased growth to hormonal status, we analyzed the hormone distribution and genome-wide gene expression profiles in unprecedentedly high resolution across the cambial zone. Interestingly, in addition to showing an elevated cambial cytokinin content and signaling level, the cambial auxin concentration and auxin-responsive gene expression were also increased in the transgenic trees. Our results indicate that cytokinin signaling specifies meristematic activity through a graded distribution that influences the amplitude of the cambial auxin gradient.J.I., K.N., J.A.S. and Y.H. were funded by ERC, Fibic EffFibre, Academy of Finland (by Centre of Excellence and other programs) and Tekes. O.P.S., L.P. and P.A. were funded by Academy of Finland. The hormone analysis was supported by Japan Advanced Plant Science Network. R.P.B. was funded by grants from Berzili, TC4F and FUTURE trees.This is the author accepted manuscript. The final version is available from Cell Press via http://dx.doi.org/10.1016/j.cub.2016.05.05

    Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots

    Get PDF
    Vascular cambium, a lateral plant meristem is a central producer of woody biomass. Although a few transcription factors (TFs) have been shown to regulate cambial activity1, the phenotypes of the corresponding loss-of-function mutants are relatively modest, highlighting our limited understanding of the underlying transcriptional regulation. Here, we utilize cambium cell-specific transcript profiling followed by a combination of TF network and genetic analyses to identify 62 novel TF genotypes displaying an array of cambial phenotypes. This approach culminated in virtual loss of cambial activity when both WUSCHEL-RELATED HOMEOBOX 4 (WOX4) and KNOTTED-like from Arabidopsis thaliana 1 (KNAT1; also known as BREVIPEDICELLUS (BP) were mutated, thereby unlocking the genetic redundancy in the regulation of cambium development. We also identified TFs with dual functions in cambial cell proliferation and xylem differentiation, including WOX4, SHORT VEGETATIVE PHASE (SVP) and PETAL LOSS (PTL). Using the TF network information, we combined overexpression of the cambial activator WOX4 and removal of the putative inhibitor PTL to engineer Arabidopsis for enhanced radial growth. This line also showed ectopic cambial activity, thus further highlighting the central roles of WOX4 and PTL in cambium development.This work was supported by Finnish Centre of Excellence in Molecular Biology of Primary Producers (Academy of Finland CoE program 2014-2019) decision #271832, the Gatsby Foundation (GAT3395/PR3)), the University of Helsinki (award 799992091) and the European Research Council Advanced Investigator Grant SYMDEV (No. 323052) to Y.H.; Academy of Finland (grants #132376, #266431, #271832), University of Helsinki HiLIFE fellowship to A.P.M.; National Research Foundation of Korea (2018R1A5A1023599 and 2016R1A2B2015258) to J-Y. L

    AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins

    Get PDF
    Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.Peer reviewe

    Biohiili kiertotalousratkaisuna Kanta-Hämeessä

    No full text
    Biohiili on noussut viime vuosina kasvavan mielenkiinnon kohteeksi sekä tieteessä että käytännön sovelluksissa, erityisesti kiertotaloudessa. Sitä voidaan tuottaa monista muuten ehkä vaikeasti kierrätettävistä jäte- ja sivuvirroista ja käyttää lukuisissa eri sovelluksissa maaperän parannuksesta aina vesien käsittelyyn ja teknisiin tuotteisiin. Biohiilellä on merkitystä maailmanlaajuisesti konkreettisena, pitkäaikaisena ja kustannustehokkaana hiilen sitojana ja täten hiilikompensaatiovälineenä. Biohiilen kaupallinen tuotanto on kuitenkin vielä rajoittunutta, ja tuotteen korkea hinta on hillinnyt kysyntää etenkin suuren mittakaavan käyttösovelluksissa. Kanta-Hämeessä vuosina 2018–2020 toteutettu Biohiilestä bisnestä Hämeeseen -hanke selvitti, voisiko alueellinen biohiilen tuotanto tarjota vaikeasti hyödynnettäville jäte- ja sivuvirroille kestävän hyödyntämisratkaisun. Samalla hankkeessa on etsitty luontevaa alustaa alueelliselle osaamis- ja yritysyhteistyölle biohiilen valmistukseen ja käyttöön pohjautuvan kiertotalouden ympärille. Tässä julkaisussa esitellään hankkeen keskeisimmät toimenpiteet ja tulokset

    Arabidopsis as a model for wood formation

    No full text
    Wood (secondary xylem) is one of the most important sustainable energy sources for humans. Arabidopsis, despite its herbaceous nature, has become an excellent model to study wood formation. Recent progress has shown that conserved molecular mechanisms may exist in herbaceous plants and trees during vascular development and wood formation. Several transcription factor families and plant hormone species as well as other factors contribute to the regulation of xylem development in both Arabidopsis and woody plants. In this review, we highlight how information gained from the analysis of vascular development in Arabidopsis has improved our understanding of wood formation in trees

    Nuclear Genes That Encode Mitochondrial Proteins for DNA and RNA Metabolism Are Clustered in the Arabidopsis Genome

    Get PDF
    The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions

    Dual-Domain, Dual-Targeting Organellar Protein Presequences in Arabidopsis Can Use Non-AUG Start Codons

    No full text
    The processes accompanying endosymbiosis have led to a complex network of interorganellar protein traffic that originates from nuclear genes encoding mitochondrial and plastid proteins. A significant proportion of nucleus-encoded organellar proteins are dual targeted, and the process by which a protein acquires the capacity for both mitochondrial and plastid targeting may involve intergenic DNA exchange coupled with the incorporation of sequences residing upstream of the gene. We evaluated targeting and sequence alignment features of two organellar DNA polymerase genes from Arabidopsis thaliana. Within one of these two loci, protein targeting appeared to be plastidic when the 5′ untranslated leader region (UTR) was deleted and translation could only initiate at the annotated ATG start codon but dual targeted when the 5′ UTR was included. Introduction of stop codons at various sites within the putative UTR demonstrated that this region is translated and influences protein targeting capacity. However, no ATG start codon was found within this upstream, translated region, suggesting that translation initiates at a non-ATG start. We identified a CTG codon that likely accounts for much of this initiation. Investigation of the 5′ region of other nucleus-encoded organellar genes suggests that several genes may incorporate upstream sequences to influence targeting capacity. We postulate that a combination of intergenic recombination and some relaxation of constraints on translation initiation has acted in the evolution of protein targeting specificity for those proteins capable of functioning in both plastids and mitochondria
    corecore