90 research outputs found

    Optimal time scaling for plant growth analysis

    Get PDF
    In field trials the development of plants is regularly scored on a visual scale. Plots of the data show strongly curved relationships with time. We investigate optimal scaling of the time axis in order to get linear curves and apply it to decay data of potato plants

    Penalized composite link models for aggregated spatial count data: a mixed model approach

    Get PDF
    Mortality data provide valuable information for the study of the spatial distri- bution of mortality risk, in disciplines such as spatial epidemiology and public health. However, they are frequently available in an aggregated form over irreg- ular geographical units, hindering the visualization of the underlying mortality risk. Also, it can be of interest to obtain mortality risk estimates on a finer spatial resolution, such that they can be linked to potential risk factors that are usually measured in a different spatial resolution. In this paper, we propose the use of the penalized composite link model and its mixed model representation. This model considers the nature of mortality rates by incorporating the population size at the finest resolution, and allows the creation of mortality maps at a finer scale, thus reducing the visual bias resulting from the spatial aggrega- tion within original units. We also extend the model by considering individual random effects at the aggregated scale, in order to take into account the overdis- persion. We illustrate our novel proposal using two datasets: female deaths by lung cancer in Indiana, USA, and male lip cancer incidence in Scotland counties. We also compare the performance of our proposal with the area-to-point Poisson kriging approach

    Bilinear modulation models for seasonal tables of counts

    Get PDF
    We propose generalized linear models for time or age-time tables of seasonal counts, with the goal of better understanding seasonal patterns in the data. The linear predictor contains a smooth component for the trend and the product of a smooth component (the modulation) and a periodic time series of arbitrary shape (the carrier wave). To model rates, a population offset is added. Two-dimensional trends and modulation are estimated using a tensor product B-spline basis of moderate dimension. Further smoothness is ensured using difference penalties on the rows and columns of the tensor product coefficients. The optimal penalty tuning parameters are chosen based on minimization of a quasi-information criterion. Computationally efficient estimation is achieved using array regression techniques, avoiding excessively large matrices. The model is applied to female death rate in the US due to cerebrovascular diseases and respiratory diseases

    Spatial Models for Field Trials

    Get PDF
    An important aim of the analysis of agricultural field trials is to obtain good predictions for genotypic performance, by correcting for spatial effects. In practice these corrections turn out to be complicated, since there can be different types of spatial effects; those due to management interventions applied to the field plots and those due to various kinds of erratic spatial trends. This paper presents models for field trials in which the random spatial component consists of tensor product Penalized splines (P-splines). A special ANOVA-type reformulation leads to five smooth additive spatial components, which form the basis of a mixed model with five unknown variance components. On top of this spatial field, effects of genotypes, blocks, replicates, and/or other sources of spatial variation are described by a mixed model in a standard way. We show the relation between several definitions of heritability and the effective dimension or the effective degrees of freedom associated to the genetic component. The approach is illustrated with large-scale field trial experiments. An R-package is provided

    Reliable Single Chip Genotyping with Semi-Parametric Log-Concave Mixtures

    Get PDF
    The common approach to SNP genotyping is to use (model-based) clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method, named SCALA, is proposed. It is based on a mixture model using semi-parametric log-concave densities. Instead of using the raw data, the mixture is fitted on a two-dimensional histogram, thereby making computation time almost independent of the number of SNPs. Furthermore, the algorithm is effective in low-MAF situations. Comparisons between SCALA and CRLMM on HapMap genotypes show very reliable calling of single arrays. Some heterozygous genotypes from HapMap are called homozygous by SCALA and to lesser extent by CRLMM too. Furthermore, HapMap's NoCalls (NN) could be genotyped by SCALA, mostly with high probability. The software is available as R scripts from the website www.math.leidenuniv.nl/~rrippe

    Penalized composite link mixed models for two-dimensional count data

    Get PDF
    Mortality data provide valuable information for the study of the spatial distribution of mortality risk, in disciplines such as spatial epidemiology, medical demography, and public health. However, they are often available in an aggregated form over irregular geographical units, hindering the visualization of the underlying mortality risk and the detection of meaningful patterns. Also, it could be of interest to obtain mortality risk estimates on a finer spatial resolution, such that they can be linked with potential risk factors — in a posterior correlation analysis — that are usually measured in a different spatial resolution than mortality data. In this paper, we propose the use of the penalized composite link model and its representation as a mixed model to deal with these issues. This model takes into account the nature of mortality rates by incorporating the population size at the finest resolution, and allows the creation of mortality maps at a desirable scale, reducing the visual bias resulting from the spatial aggregation within original units. We illustrate our proposal with the analysis of several datasets related with deaths by respiratory diseases, cardiovascular diseases, and lung cancer.MTM2011-28285-C02-02 MTM2014-52184-

    Modelling trends in digit preference patterns

    Get PDF
    Digit preference is the habit of reporting certain end digits more often than others. If such a misreporting pattern is a concern, then measures to reduce digit preference can be taken and monitoring changes in digit preference becomes important. We propose a two-dimensional penalized composite link model to estimate the true distributions unaffected by misreporting, the digit preference pattern and a trend in the preference pattern simultaneously. A transfer pattern is superimposed on a series of smooth latent distributions and is modulated along a second dimension. Smoothness of the latent distributions is enforced by a roughness penalty. Ridge regression with an L1-penalty is used to extract the misreporting pattern, and an additional weighted least squares regression estimates the modulating trend vector. Smoothing parameters are selected by the Akaike information criterion. We present a simulation study and apply the model to data on birth weight and on self-reported weight of adults

    Fast estimation of multidimensional adaptive P-spline models

    Get PDF
    A fast and stable algorithm for estimating multidimensional adaptive P-spline models is presented. We call it as Separation of Overlapping Penalties (SOP) as it is an extension of the Separation of Anisotropic Penalties (SAP) algorithm. SAP was originally derived for the estimation of the smoothing parameters of a multidimensional tensor product P-spline model with anisotropic penalties.MTM2014-55966-P MTM2014-52184-

    Correcting for spatial heterogeneity in plant breeding experiments with P-splines

    Get PDF
    An important aim of the analysis of agricultural field experiments is to obtain good predictions for genotypic performance, by correcting for spatial effects. In practice these corrections turn out to be complicated, since there can be different types of spatial effects; those due to management interventions applied to the field plots and those due to various kinds of erratic spatial trends. This paper explores the use of two-dimensional smooth surfaces to model random spatial variation. We propose the use of anisotropic tensor product P-splines to explicitly model large-scale (global trend) and small-scale (local trend) spatial dependence. On top of this spatial field, effects of genotypes, blocks, replicates, and/or other sources of spatial variation are described by a mixed model in a standard way. Each component in the model is shown to have an effective dimension. They are closely related to variance estimation, and helpful for characterising the importance of model components. An important result of this paper is the formal proof of the relation between several definitions of heritability and the effective dimension associated with the genetic component. The practical value of our approach is illustrated by simulations and analyses of large-scale plant breeding experiments. An \texttt{R}-package, \texttt{SpATS}, is provide

    On the estimation of variance parameters in non-standard generalised linear mixed models: Application to penalised smoothing

    Get PDF
    We present a novel method for the estimation of variance parameters in generalised linear mixed models. The method has its roots in Harville (1977)'s work, but it is able to deal with models that have a precision matrix for the random-effect vector that is linear in the inverse of the variance parameters (i.e., the precision parameters). We call the method SOP (Separation of Overlapping Precision matrices). SOP is based on applying the method of successive approximations to easy-to-compute estimate updates of the variance parameters. These estimate updates have an appealing form: they are the ratio of a (weighted) sum of squares to a quantity related to effective degrees of freedom. We provide the sufficient and necessary conditions for these estimates to be strictly positive. An important application field of SOP is penalised regression estimation of models where multiple quadratic penalties act on the same regression coefficients. We discuss in detail two of those models: penalised splines for locally adaptive smoothness and for hierarchical curve data. Several data examples in these settings are presented.MTM2014-55966-P MTM2014-52184-
    corecore