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Abstract

A fast and stable algorithm for estimating multidimensional adaptive P-spline models

is presented. We call it as Separation of Overlapping Penalties (SOP) as it is an extension

of the Separation of Anisotropic Penalties (SAP) algorithm. SAP was originally derived

for the estimation of the smoothing parameters of a multidimensional tensor product P-

spline model with anisotropic penalties.
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1 Introduction

Standard P-splines assume one smoothing parameter for modelling the effect of a covariate

across its whole domain. In many applications it is desirable and needed to adapt smoothness

locally to the data, and adaptive P-splines have been suggested.

The literature contains several proposals for adaptive P-splines. See, for instance,

Krivobokova et al. (2008) and Wood (2011). However, the estimation procedures used

by all these approaches can be very slow or even unstable. Based on the proposal by Wood

(2011), we generalize the SAP algorithm given in Rodŕıguez-Álvarez et al. (2015) to deal

with the adaptive penalty that is obtained.

∗This paper is based on that published by the same authors as a part of the proceedings of the 30th
International Workshop on Statistical Modelling, Linz, 6–10 July 2015 (Volume I, pp. 330 – 335. Eds: Friedl,
H. and Wagner, H.)
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For brevity, we mainly focus here on the univariate adaptive approach for Gaussian data.

However, the proposal can be extended to the multidimensional case, as well as to non-

Gaussian responses along the lines of the Generalized Linear Model.

2 Adaptive penalized splines

Consider a regression problem

yi = f (xi) + εi i = 1, . . . n,

where f is a smooth and unknown function and εi ∼ N
(
0, σ2

)
. Within the P-spline framework

Eilers and Marx (1996), the unknown function f(x) can be approximated by a linear com-

bination of B-splines basis functions, i.e., f(x) =
∑c

j=1 θjBj (x), and smoothness is achieved

by imposing a penalty on the regression coefficients θ in the form

P = λ
c∑

k=q+1

(∆qθk)2 = λθtDtDθ, (1)

where λ is the smoothing parameter, and ∆q forms differences of order q on adjancent coeffi-

cients, i.e., ∆θk = θk−θk−1, ∆2θk = ∆ (∆θk) = θk−θk−1−(θk−1 − θk−2) = θk−2θk−1+θk−2,

and so on for higher q. Finally, D is simply the matrix representation of ∆q.

As can be observed in (1), the same smoothing parameter λ applies to all coefficient

differences, irrespective of their location. For more flexibility, we may think of assuming a

different smoothing parameter for each difference

c∑
k=q+1

λk−q (∆qθk)2 = θtDtdiag(λ)Dθ, (2)

where λ = (λ1, . . . , λc−q)
t. Note that this approach would imply as many smoothing parame-

ters as coefficients (minus q), which could lead to under-smoothing and unstable computations.

Given the local and ordered nature of the coefficient differences, we may model the smoothing

parameters λk as a smooth function of k (its position) and use B-splines for this purpose (here

no penalty is assumed)

λ = Cφ,

where C is a B-spline regression matrix of dimension (c − q) × p with p < (c − q), and φ =

(φ1, . . . , φp)
t is the new vector of smoothing parameters. Performing some simple algebraic
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operations, it can thus be shown that the adaptive penalty (2) is

θt

(
p∑

l=1

φlD
tdiag (cl)D

)
θ, (3)

where cl denotes the column l of C.

3 Estimation algorithm

Estimation of the P-spline model subject to the penalty defined in (1) can be carried out

based on the equivalence between P-splines and mixed models Currie and Durban (2002)

f = Bθ = Xβ +Zα,

where X =
[
1n|x| . . . |x(q−1)

]
and Z = BDt

(
DDt

)−1
. It can be shown that the inverse of

the variance-covariance matrix of the random effects α is

G−1 =
1

τ2
Ic−q,

where τ2 = σ2/λ. Here, only one variance component, τ , is present, shrinking or penalizing

the α towards zero. The variance component can then be estimated on the basis of the

iterative Harville-Schall (HS) algorithm (Harville 1977; Schall 1991) . When applying the

same mixed model parameterization to the adaptive P-spline with the penalty defined in (3),

G−1 becomes

G−1 =

p∑
l=1

1

τ2l
diag (cl) , (4)

where τ2l = σ2/φl. In this case each random effect is shrunk by several variance components,

making the application of the HS algorithm unfeasible. In the paper by Rodŕıguez-Álvarez

et al. (2015) the HS algorithm was extended to deal with multiple penalties on the same

coefficients, with the penalties coming in that case from two (or more) spatial dimensions.

However, multiple penalties can arise in a broader class of situations, as in our adaptive

approach. Given thatG−1 in (4) is expressed as a linear combination defined over the variance

components, it can be shown that the SAP algorithm can be generalized to the estimation

of τl. Specifically, in each iteration the variance components estimates are updated, until

convergence, according to

τ̂2l =
αtdiag (cl)α

edl
,
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where

edl = trace

(
ZtPZG

diag (cl)

τ2l
G

)
,

with P = V −1 − V −1X
(
XtV −1X

)−1
XtV −1 and V = σ2In + ZGZt. In principle, these

traces involve several n×n matrices. However, an efficient computation can be achieved since:

(a) Gdiag (cl)G is a diagonal matrix; and, (b) ZtPZ can be easily computed (see equation

(8) in Rodŕıguez-Álvarez et al. 2015). Finally, note that
∑p

l=1 edl = trace
(
ZtPZG

)
=

trace
(
ZGZtP

)
, where ZGZtP corresponds to the hat matrix of the random effects.

4 Adaptive penalty in two dimensions

Extension of the univariate P-spline model given in Section 2 above to the modeling of two-

dimensional (2D) surfaces is usually based on the tensor product of univariate B-spline basis,

with the penalty matrix being defined as (see Eilers and Marx 2003 for further details)

γ1 (Ic2 ⊗D1)
t (Ic2 ⊗D1) + γ2 (D2 ⊗ Ic1)t (D2 ⊗ Ic1) ,

where γ1 and γ2 are the smoothing parameters (we assume anisotropy) and ⊗ denotes the

Kronecker product. Following the same reasoning used for the univariate case, in the adaptive

case each smoothing parameter γd (d = 1, 2) is replaced by a vector of smoothing param-

eters γd, where each component is associated with one coefficient difference. To reduce the

dimension, γd is then modeled by means of B-splines. However, since we still are in the two

dimensional case, the tensor product of B-spline basis is used. Specifically,

γ1 = (C11 ⊗C12)φ1 = C1φ1,

γ2 = (C21 ⊗C22)φ2 = C2φ2,

where C11, C12, C21 and C22 are B-spline regression matrices of dimension (c1 − q1) × p11,
c2 × p12, c1 × p21 and (c2 − q2) × p22, respectively, and φ1 = (φ11, · · · , φ1p11p12) and φ2 =

(φ12, · · · , φ1p21p22). Accordingly, the adaptive penalty matrix in two dimensions can be then

expressed as

p11p12∑
m=1

φ1m (Ic2 ⊗D1)
t diag (c1,m) (Ic2 ⊗D1) +

p21p22∑
s=1

φ2s (D2 ⊗ Ic1)t diag (c2,s) (D2 ⊗ Ic1) .

4



cd,l denotes the column l of Cd.

5 Applications

To illustrate our proposal, we use data consisting of photon counts of diffracted x-ray radi-

ation as a function of the angle of diffraction. The dataset can be found in the R-package

diffractometry (R Core Team 2016; Davies et al. 2013). Given that the outcome variable

represents count data, a Poisson model was adopted. We compared the performance of the

SOP algorithm with the method given in Wood (2011), as it is implemented in the R-package

mgcv. In both cases, we used second-order differences and 200 B-splines for the curve and 80

for the adaptive penalty. Results are shown in Figure 1. The result of mgcv was almost iden-

tical to our proposal, so it is not depicted. Our algorithm took less that 3 seconds, whereas

mgcv was around 1000 times slower.

We also applied the proposed algorithm to the analysis of simulated 2D data. A sample

size of 2000 Gaussian data with σ = 0.1 was simulated, second-order differences were used,

and we chose 15 marginal B-splines for the surface and 8 for the adaptive penalty. Note that

this configuration yields to 128 (8× 8× 2) smoothing parameters (or variance components).

It should be noted, however, that the implementation of the 2D adaptive in the mgcv package

uses a different adaptive penalty that the one presented on Section 4. In that approach, and

for the same configuration, the number of smoothing parameters is 64. Here our algorithm

was around 30 times faster than Wood (2011)’s approach, providing a computing time of

about 22 seconds. Figures 2 and 3 depict the graphical results. The better behaviour of our

approach can be explained by the fact that the adaptive penalty assumed in our case is more

general and complex than that implemented in the mgcv package.
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Figure 1: Smooth effect of the angle of diffraction on the x-ray radiation. Grey: Raw data.
Red: SOP algorithm.
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Figure 2: Simulated theoretical surface and fitted surface given by the SOP algorithm and
the mgcv package.
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Figure 3: Contour plots. Black line: Simulated theoretical surface; Red line: fitted surface
given by the SOP algorithm and the mgcvpackage.
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