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Abstract

Mortality data provide valuable information for the study of the spatial distri-
bution of mortality risk, in disciplines such as spatial epidemiology and public
health. However, they are frequently available in an aggregated form over irreg-
ular geographical units, hindering the visualization of the underlying mortality
risk. Also, it can be of interest to obtain mortality risk estimates on a finer
spatial resolution, such that they can be linked to potential risk factors that are
usually measured in a different spatial resolution. In this paper, we propose the
use of the penalized composite link model and its mixed model representation.
This model considers the nature of mortality rates by incorporating the popu-
lation size at the finest resolution, and allows the creation of mortality maps at
a finer scale, thus reducing the visual bias resulting from the spatial aggrega-
tion within original units. We also extend the model by considering individual
random effects at the aggregated scale, in order to take into account the overdis-
persion. We illustrate our novel proposal using two datasets: female deaths by
lung cancer in Indiana, USA, and male lip cancer incidence in Scotland coun-
ties. We also compare the performance of our proposal with the area-to-point
Poisson kriging approach.

Keywords: Penalized composite link models, Mixed models, Mortality rates,
Disease mapping

1. Introduction

Disease mapping studies commonly consider public health data that are only
available in an aggregated form over irregular geographical units, like counties,
districts, and municipalities. Epidemiologists, health care practitioners, and
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other researchers use these data to study the spatial distribution of mortality5

risk (caused by a certain disease), and thus identify areas of excess and their
potential risk factors. In general, rates are used as measures of the risk, since
they incorporate information about the population of each unit. Choropleth
maps are then used to display such rates, but they must be interpreted with
caution: rates calculated from small or sparsely populated units are likely to10

be elevated artificially (Waller and Gotway, 2004). This effect, known as the
small number problem, may hinder the detection of meaningful patterns in the
study area. Another problem that can arise is the spatial misalignment between
potential risk factors and health data: in general, the former are available on a
finer spatial resolution than the latter. For example, most deprivation indices15

are built on the smallest possible geographical units of a certain region (see Rey
et al., 2009; Salmond and Crampton, 2012) or even on a fine grid (Caudeville
et al., 2012). Environmental agents (such as air pollution) constitute examples of
risk factors that vary continuously in space. Consequently, this issue precludes
their direct use in a correlation analysis, which is a critical step for disease20

control intervention. Therefore, it is relevant to develop spatial methodologies
that filter the noise caused by the small number problem and allow the creation
of mortality maps, from aggregated data, at a finer spatial resolution.

Different approaches have been used to reduce the noise in aggregated mor-
tality rates (see Besag et al., 1991; MacNab and Dean, 2002; Fahrmeir et al.,25

2004; Goovaerts, 2005; Lee and Durbán, 2009; among others). However, they
give smoothed mortality estimates that are assumed constant over each unit,
yielding a coarse spatial trend. To obtain a more detailed impression of mortal-
ity through units, several methodologies have been proposed in the literature.
In a geostatistical framework, Kelsall and Wakefield (2002) obtained pointwise30

posterior medians of the underlying continuous risk surface, for colorectal can-
cer mortality in the UK district of Birmingham, via a Gaussian random field
(GRF) model. Goovaerts (2006) generalized the Poisson kriging algorithm given
by Monestiez et al. (2005, 2006), which incorporates the size and shape of the
units, as well as the population density, into the filtering of noisy mortality rates.35

This generalization allows the mapping of the corresponding mortality risk at
a fine resolution. The performance of his approach, called area-to-point (ATP)
Poisson kriging, was compared with two geostatistical methods. The first one
corresponds to the simple interpolation of raw rates to the nodes of a fine grid
using ordinary kriging. The second one corresponds to the approach proposed40

by Berke (2004), in which the raw rates are replaced by their global empir-
ical Bayes estimates before the interpolation process. Local Bayes estimates
were also considered in the analysis. Lately, and from a Bayesian inferential
viewpoint, Diggle et al. (2013) used the class of log-Gaussian Cox processes (as
models for spatial point process data) to construct a continuous map of lung45

cancer mortality risks in the Castile-La Mancha region of Spain, from spatially
discrete data. The previous works are related to the change of support problem
(see, e.g., Gotway and Young, 2002), since they seek to obtain mortality risk
estimates at a fine resolution from data available at coarse geographical units.
There has been substantial work on this problem, especially within the hierar-50
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chical Bayesian modelling literature (see Mugglin and Carlin, 1998; Zhu et al.,
2000; Mugglin et al., 2000; Gelfand et al., 2001; Banerjee et al., 2015, Ch. 7;
among others).

In this paper, we propose the use of the penalized composite link model
(PCLM, Eilers, 2007) for the case of spatial aggregation, together with its mixed55

model representation. The composite link mixed model (CLMM) allows us to
create mortality risk maps from aggregated data at a fine spatial resolution,
and to incorporate finer scale information into the filtering of noisy mortality
rates. We assume here the underlying mortality risk at the fine resolution is
smooth. The flexibility of the model is provided by the use of B-splines, together60

with a penalty on the regression coefficients, following the P-spline methodology
(Eilers and Marx, 1996). The mixed model representation makes it possible to
include specific random effects or further correlation structure if necessary, and
to estimate the parameters of the PCLM under the framework of mixed model
theory.65

We illustrate the case when we seek to estimate the spatial mortality trend
at a fine grid, using health data available at coarse geographical units, i.e.,
the ATP case. We obtain a continuous surface without spatial boundaries on
the study area (that is, an isopleth map), reducing the visual bias associated
with the interpretation of choropleth maps (Cressie, 1993) that is caused by the70

variation in shape and size of the units.
The rest of this paper is organized as follows. In Section 2, we present our

methodological approach: the CLMM for spatially aggregated count data, where
we indicate how the ATP case is accommodated by our proposal. Also, in this
section we provide a parameter estimation procedure for the CLMM, and we75

extend the model to deal with the problem of overdispersion in count data, by
incorporating individual random effects at the aggregated scale. In Section 3,
we illustrate our methodology using two datasets. The first is related to female
deaths by lung cancer in the state of Indiana, USA, recorded over the period
1970-1994, and the second to male lip cancer incidence in Scotland, recorded80

over the period 1975-1980. We specifically use the Scottish lip cancer dataset to
illustrate how our model accommodates the presence of overdispersion in data.
In Section 4, we use the lung cancer dataset to compare the performance of our
proposal with the ATP Poisson kriging of Goovaerts (2006) (an additional per-
formance comparison, where the geographical units vary considerably in shape85

and size, is included in Appendix A). Finally, we provide a short discussion in
Section 5.

2. The composite link mixed model

2.1. The PCLM approach

In the one-dimensional case, suppose that a vector of aggregated counts y
follows a Poisson distribution with mean vector µ. These counts can be seen as
indirect observations of a latent process that we want to estimate. The PCLM
approach of Eilers (2007) (which is based on the work by Thompson and Baker,
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1981) offers an elegant way to do this, by considering µ as composed of latent
expectations. The Poisson PCLM is given by:

µ = Cγ = C exp(Bθ), (1)

where γ represents the mean vector of the latent process at a desirable fine90

resolution, C is the composition matrix that describes how these latent expec-
tations are combined to yield µ, B = B(x) is a B-spline basis constructed from
a covariate, x, at fine resolution, and θ is a vector of regression coefficients.
Smoothness is imposed over adjacent regression coefficients, by subtracting the
roughness penalty 1

2θ
′Pθ from the log-likelihood of y, where P = λD′D is95

based on a difference matrix D of order q and a smoothing parameter λ that
controls the amount of smoothness. Parameter estimation of the model given in
Eq. (1), subject to the penalization, is carried out by a modified version of the
iteratively reweighted least squares (IRWLS) algorithm, where an information
criterion (such as AIC or BIC) is used to choose an optimal value for λ. Several100

applications of the PCLM can be found in Eilers (2012).
For illustration purposes, let us consider the number of deaths from res-

piratory disease of American population in January 1959, from ages 1 to 120
(see Currie et al., 2006, for more details about these data). Figure 1 shows the
counts per age-at-death (vertical lines) and the smooth trend that follow these105

counts (g = 1). If we artificially aggregate them into two, five, ten, and twenty
age classes, and we apply the PCLM approach to these aggregated counts, we
obtain the smooth colored curves of Figure 1 (g = 2, 5, 10, 20). The smooth
curves for the cases g = 2, g = 5 and g = 10 are close to the smooth trend
at the disaggregated scale, whereas the blue smooth curve for the case g = 20110

departs from it (especially between 60 and 90 years old). This is because we
have less precision when the aggregation level increases.

In a Bayesian framework, the PCLM approach was developed by Lambert
and Eilers (2009) for the estimation of smooth densities from grouped data.
Furthermore, Lambert (2011) extended the previous work for the estimation115

of a bivariate density from a histogram with wide bins, using semi- and non-
parametric strategies. In that case, Kronecker versions of the composition and
B-spline matrices are considered. However, its extension for the spatial setting
has not been explored.

In the following subsection, we extend the PCLM in Eq. (1) to the spatial120

case. This extension allow us to analyse the distribution of mortality rates (dis-
ease incidence, fertility or others vital rates) in a finer spatial resolution than
the original, under the modest assumption of smoothness. Moreover, it implies
an improvement over previous related works (Lee and Durbán, 2009; Perper-
oglou and Eilers, 2010) in terms of the visualization of the underlying mortality125

risk (the previous cited works only give mortality risk estimates for each unit,
while our approach provides a mortality risk surface across coarse units) and the
incorporation of fine-scale information in the mortality risk estimation. We also
choose to represent the PCLM as a mixed model. This representation allows the
inclusion of specific random effects or further correlation structure, and offers130
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Figure 1: Death counts from respiratory disease of American population in January 1959,
from ages 1 to 120 (vertical lines). The black curve represents the estimated trend based
on the ungrouped data. The colored curves represent the estimated distributions using the
PCLM approach, from different aggregations per g age classes, where g denotes the width of
the groups.

another alternative for the parameter estimation of the PCLM – avoiding the
use of information criteria for smoothing parameter selection.

2.2. The spatial CLMM

Suppose the vector of aggregated counts y are now available over n non-
overlapping geographical units vi, i = 1, ..., n. Let x1 and x2 be the geographical
coordinates (longitude and latitude, respectively) of length m that define the
desirable fine spatial resolution. Then, in this new context, the full regression
basis B is defined as the ‘row-wise’ Kronecker product (denoted by �, Eilers
et al., 2006) of the marginal B-spline bases B1 = B(x1) and B2 = B(x2) of
dimensions m× c1 and m× c2, respectively:

B = B2�B1 = (B2 ⊗ 1′c1)� (1′c2 ⊗B1), (2)

where 1k denotes a vector of ones of length k, and the matrix operators ⊗
and � represent the Kronecker and the Hadamard (or ‘element-wise’) products,
respectively. The construction of B1 and B2 depends on the number of selected
(equally-spaced) knots for each coordinate, ndx1 and ndx2, and the degree of
B-spline used, bdeg1 and bdeg2. The two-dimensional penalty matrix is given
by:

P = λ1Ic2 ⊗P1 + λ2P2 ⊗ Ic1 , (3)
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where Ik is an identity matrix of dimension k×k, λd is the smoothing parameter
that controls the amount of smoothness along the covariate xd, and Pd = D′dDd135

is the marginal penalty matrix based on the difference matrix Dd of order qd
(d = 1, 2). The penalty matrix in Eq. (3) allows for anisotropy, i.e., we can
have a different amount of smoothing for x1 and x2. Here we have to make
choices about ndxd, bdegd, and qd, for d = 1, 2. Usually, ndx1 and ndx2 are
chosen large (one knot for every four different covariate values is a reasonable140

choice) to preserve enough flexibility. For the other quantities, it is sufficient
to use cubic B-splines (that is, bdeg1 = bdeg2 = 3) and quadratic penalties
(q1 = q2 = 2). For a further discussion, see Eilers and Marx (1996), Currie and
Durbán (2002) and Eilers et al. (2015).

Considering the regression basis in Eq. (2) and its associated regression co-145

efficients θ, it was shown in Lee and Durbán (2009) that expression Bθ can be
reformulated as Bθ = Xβ + Zα (using a suitable orthogonal transformation
matrix T such that BT = [X : Z] and T′θ = (β,α)′), where X and Z are the
fixed and random effects matrices, and β and α are their associated coefficients,
respectively. The construction of the mixed model matrices X and Z is briefly150

described below (for more details, see Lee and Durbán, 2009 and Lee, 2010, pp.
63-65).

Consider the singular value decomposition (SVD) of the marginal penalty
matrix Pd in Eq. (3):

Pd = UdΣdU
′
d,

where Ud is the matrix of singular vectors, and Σd is a diagonal matrix that
contains the singular values of Pd, for d = 1, 2. Each matrix Ud can be split in
two parts:

Ud = [Udn : Uds],

where Uds is a matrix of dimension cd × (cd − qd) that contains the non-null
part of the decomposition. With this partition, we can decompose each marginal
penalty matrix as follows:

Pd = [Udn : Uds]

[
0qd

Σ̃d

]
[Udn : Uds]

′,

where 0qd denotes a square matrix of zeroes of dimension qd × qd, and Σ̃d is a
diagonal matrix that contains the (cd − qd) positive singular values of Pd, for
d = 1, 2. Then, defining the matrices Xd = BdUdn and Zd = BdUds (d = 1, 2),
the mixed model matrices are obtained as:

X = X2�X1,

Z = [Z2�X1 : X2�Z1 : Z2�Z1].
(4)

Moreover, it can be shown the mixed model penalty corresponds to the block-
diagonal matrix:

F =

 λ2Σ̃2 ⊗ Iq1
λ1Iq2 ⊗ Σ̃1

λ2Σ̃2 ⊗ Ic1−q1 + λ1Ic2−q2 ⊗ Σ̃1

 , (5)
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where the matrices Σ̃d (d = 1, 2) were defined above.
Using the previous mixed model representation, we can extend the model

given in Eq. (1) to the spatial case by modifying γ as follows:

µ = Cγ = C exp(Xβ + Zα+ log(ef)), with α ∼ N (0,G) , (6)

where X and Z are the mixed model matrices defined in Eq. (4), and ef is a
vector of exposures at the fine resolution. The random effects have covariance155

matrix G that is obtained as G = σ2
εF
−1, where σ2

ε = 1 (in the Poisson case)
and F is the block-diagonal matrix defined in Eq. (5). We refer to Eq. (6) as
the (Poisson) composite link mixed model or, more briefly, as CLMM.

Since our goal is to analyse rates, the vector ef in Eq. (6) has to be known
in advance; otherwise, it has to be estimated. If the vector of exposures is160

only available at the aggregated level, a naive approach to estimate ef is to
assume that these aggregated exposures are evenly distributed throughout the
fine resolution. Another possibility is to apply the CLMM approach to the
aggregated vector of exposures to obtain estimates for ef.

The composition matrix C in Eq. (6) is fixed and its structure depends on165

the process that generates the aggregated data. If we take C as the identity
matrix, then we have that µ = γ in Eq. (6). In such case, the CLMM approach is
reduced to the penalized generalized linear mixed model (PGLMM) approach of
Lee and Durbán (2009) for Poisson data, where the spatial covariates correspond
to the geographical centroids of the units.170

In Section 1, we pointed out the CLMM can handle the ATP case. For that,
we consider x1 and x2 as the coordinates of the cell centroids of a fine grid,
which fall inside of the geographical units. Thus, the elements of the (spatial)
composition matrix C are:

cij =

{
1 if (x1j , x2j) belongs to unit vi
0 otherwise

(7)

for i = 1, ..., n, and j = 1, ...,m.

2.3. Parameter estimation

Since the covariance matrix G in Eq. (6) is obtained from F in Eq. (5), it
depends on two smoothing parameters, λ1 and λ2, that have to be estimated. In
consequence, the parameter estimation of the CLMM involves two interrelated175

stages: (a) the estimation of the fixed and random coefficients β and α of
the vector of latent expectations γ; and (b) the estimation of the smoothing
parameters λ1 and λ2. For stage (a), we use the penalized quasi-likelihood
(PQL) approach (Breslow and Clayton, 1993), which is commonly used for the
parameter estimation of GLMMs; and for stage (b), we use the residual (or180

restricted) maximum log-likelihood (REML, Patterson and Thompson, 1971) as
a numerical optimization criterion for smoothing parameter selection. Technical
details of these stages are derived below.

Consider the joint density function of y in the CLMM context:

f(y|α) = exp (y′ log(µ)− 1′nµ− 1′n log(Γ (y + 1n))) , (8)
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where µ = Cγ, γ = exp(Xβ+Zα+log(ef)), and α ∼ N (0,G(λ1, λ2)). Taking
into account Eq. (8) and for given values of λ1 and λ2, we obtain estimates for
β and α by maximizing the penalized log-likelihood:

`p = log (f(y|α))− 1

2
α′G−1α. (9)

Differentiating Eq. (9) with respect to βk and αl, we obtain:

∂`p
∂βk

=

n∑
i=1

(yi − µi)
1

µi

m∑
j=1

cijγjxjk

 , for k = 1, ..., p; (10)

∂`p
∂αl

=

n∑
i=1

(yi − µi)
1

µi

m∑
j=1

cijγjzjl

−G−1l α, for l = 1, ..., r, (11)

where G−1l denotes the l-th row of the matrix G−1. Writing 1
µi

∑m
j=1 cijγjxjk

in Eq. (10) and 1
µi

∑m
j=1 cijγjzjl in Eq. (11) as x̆ik and z̆il, respectively, and

equating the expressions above to zero, we obtain:

n∑
i=1

(yi − µi)x̆ik = 0, for k = 1, ..., p; (12)

n∑
i=1

(yi − µi)z̆il = G−1l α, for l = 1, ..., r. (13)

Moreover, Eq. (12) and Eq. (13) can be rewritten in matrix form as:

X̆′ (y − µ) = 0; (14)

Z̆′ (y − µ) = G−1α, (15)

where X̆ = W−1CΓX and Z̆ = W−1CΓZ, with W = diag(µ) and Γ = diag(γ).
Defining the working vector:

z = X̆β + Z̆α+ W−1 (y − µ) ,

the solution of Eq. (14) and Eq.(15) via Fisher scoring algorithm (Green, 1987)
can be expressed as the iterative solution of the system:[

X̆′WX̆ X̆′WZ̆

Z̆′WX̆ G−1 + Z̆′WZ̆

] [
β
α

]
=

[
X̆′Wz

Z̆′Wz

]
. (16)

Notice that the linear system given in Eq. (16) has exactly the same structure
as that for a PGLMM (Lee, 2010). The difference is that in a PGLMM we

would have X and Z while here X̆ and Z̆ appear. Thus X̆ and Z̆ are ‘working’
X and Z matrices, respectively. From Eq. (16) we obtain a modified version of
the standard mixed model estimators:

β̂ = (X̆′V−1X̆)−1X̆′V−1z, (17)

α̂ = GZ̆′V−1(z − X̆β̂), (18)

8



where V = W−1 + Z̆GZ̆′.
Conditioning on the estimates given in Eq. (17) and Eq. (18), the smoothing

parameters λ1 and λ2 can be estimated numerically by maximizing the residual
maximum log-likelihood (REML):

−1

2
log |V|− 1

2
log |X̆′V−1X̆|− 1

2
z′(V−1−V−1X̆(X̆′V−1X̆)−1X̆′V−1)z. (19)

Therefore, the PQL solution is achieved by iteration between Eq. (17), Eq. (18),185

and Eq. (19), until convergence.
Once the parameter values at convergence are obtained, we can derive stan-

dard errors for the mixed model estimators as shown in Lin and Zhang (1999),

i.e., by approximating the covariance matrix of (β̂, α̂)′ by its Bayesian counter-
part. This approximated covariance matrix is given by:

M =

[
X̆′WX̆ X̆′WZ̆

Z̆′WX̆ G−1 + Z̆′WZ̆

]−1
, (20)

which corresponds to the inverse of the matrix on the left-hand side of Eq. (16).

Thus we can obtain standard errors for η̂ = Xβ̂+Zα̂ by taking the square root
of the diagonal elements of Var(η̂), which are obtained as:

Var(η̂j) = diag([X : Z]M[X : Z]′)jj ,

where M is defined in Eq. (20). Approximate standard errors for exp(η̂) can be
derived by using the Delta method (see, e.g., Ver Hoef, 2012; Agresti, 2015):

Var(exp(η̂j)) = Var(η̂j)× (exp(η̂j))
2.

The effective dimension (ED) of the CLMM (on the aggregated scale) is the
trace of the so-called ‘hat matrix’, tr(H), as shown in Hastie and Tibshirani
(1990), which is given by:

H = [X̆ : Z̆]M

[
X̆′W

Z̆′W

]
,

with M defined in Eq. (20). Then, we can calculate the Akaike information
criterion (AIC) as:

AIC = Dev(y|µ̂) + 2× ED ,

where Dev(y|µ̂) is the deviance for the Poisson case given by:

Dev(y|µ̂) = 2

n∑
i=1

(
yi log

(
yi
µ̂i

))
.
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2.4. Overdispersion

The PCLM approach is a useful tool for modelling aggregated or grouped
counts. However, it is assumed the counts for the groups follow Poisson distri-
butions. When this is not the case, because of overdispersion (i.e., the presence190

of extra Poisson variation due to an unobserved heterogeneity), underestimation
of the variability of estimates may occur. As a solution for the overdispersion
problem, we propose to introduce individual random effects for the logarithms
of the expected values, one for each group count. This can be viewed as an
adaptation of the PRIDE (‘penalized regression with individual deviance ef-195

fects’) approach given by Perperoglou and Eilers (2010) and Lee and Durbán
(2009). Here, we develop this idea under the CLMM framework; thus we will
refer to this approach throughout the paper as CLMM-P.

Consider φ = Cγ, where C is the composition matrix and γ is the vector of
latent expectations at the fine resolution, with γ = exp(Xβ+Zα+log(ef)). We
can generalize the CLMM formulation by assuming that the aggregated counts
are now Poisson distributed with mean vector:

µ = exp(log(φ) + δ), α ∼ N (0,G) , δ ∼ N (0, κ−1In), (21)

where κ is the dispersion parameter associated with the individual random ef-
fects δ. These random effects (defined at the aggregated scale) provides a de-200

vice to absorb the overdispersion that causes the extra-variability. Thus, in
the model given by Eq. (21), we are simultaneously dealing with parameters at
aggregated and at a finer scale.

Considering the penalized log-likelihood:

`∗p = log (f(y|α, δ))− 1

2
α′G−1α− 1

2
κδ′δ,

where f(y|α, δ) denotes the joint density distribution of y in the CLMM-P
context, and using the PQL approach for the estimation of the parameters β,
α, and δ in Eq. (21), we obtain the following system of equations: X̆′WX̆ X̆′WZ̆ X̆′W

Z̆′WX̆ G−1 + Z̆′WZ̆ Z̆′W

WX̆ WZ̆ κIn + W

 β
α
δ

 =

 X̆′Wz

Z̆′Wz
Wz

 , (22)

where now the ‘working’ matrices are defined as X̆ = Φ−1CΓX and Z̆ =
Φ−1CΓZ, with Φ = diag(φ) and Γ = diag(γ). In this case, the matrix of205

weights and the working vector are W = diag(µ), with µ defined as in Eq. (21),

and z = X̆β + Z̆α+ δ + W−1 (y − µ), respectively.
It is possible to reduce the large system of equations given in Eq. (22) by

defining δ as:
δ = (W + κIn)−1W(z − X̆β − Z̆α). (23)

Thus, if we define:
W∗ = κ(W + κIn)−1W,

10



we have that κδ = W∗(z− X̆β− Z̆α). Using this result in Eq. (22), we obtain:[
X̆′W∗X̆ X̆′W∗Z̆

Z̆′W∗X̆ G−1 + Z̆′W∗Z̆

] [
β
α

]
=

[
X̆′W∗z

Z̆′W∗z

]
.

This leads to the same system of equations of the Poisson CLMM without over-
dispersion (see Eq. (16)), but changing the matrix of weights to W∗ and the
addition of the vector δ to the working vector. Therefore, the parameters β and210

α are estimated as in Eq. (17) and Eq. (18), with V = W∗−1 + Z̆GZ̆′, and δ is
estimated using Eq. (23). Then, conditioning on these estimates, the smoothing
parameters (λ1 and λ2) and the dispersion parameter (κ) are estimated by
Eq. (19).

Finally, to compute AIC, the ‘hat-matrix’ in this case is given by:

H∗ = [X̆ : Z̆ : In]

 X̆′WX̆ X̆′WZ̆ X̆′W

Z̆′WX̆ G−1 + Z̆′WZ̆ Z̆′W

WX̆ WZ̆ κIn + W

−1  X̆′W

Z̆′W
W

 .

For an efficient calculation of the trace of the hat matrix, see Perperoglou and215

Eilers (2010).

3. Applications

In this section, we apply our methodology to two real datasets. We use
the first dataset to illustrate the CLMM approach for the ATP case. With the
second dataset, we illustrate how the CLMM-P approach can handle the problem220

of overdispersion, often present in count data. For parameter estimation, we
follow the methodology described in Section 2.3, where we use the L-BFGS-
B method of Byrd et al. (1995) to optimize the REML log-likelihood given in
Eq. (19). For both datasets, we also compare our methodology with the ATP
Poisson kriging of Goovaerts (2006). Hereafter we refer to this approach as PK.225

We implemented the CLMM and CLMM-P approaches in the statistical
software R version 3.1.0 (64-bit) on a 3.40 GHz Intel R© CoreTM i7 processor
computer with 4 GB of RAM and Windows R© 7 operating system (all computing
times mentioned hereafter were obtained using these machine specifications).
The PK approach is implemented in the geostatistical software SpaceStat 4.0230

(http://www.biomedware.com/).

3.1. Lung cancer dataset

The lung cancer dataset comes from the Atlas of Cancer Mortality in the
United States (Pickle et al., 1999), and can be downloaded from http://

ratecalc.cancer.gov. This dataset has been previously analysed by Goovaerts
(2006), and it contains the number of white female deaths by lung cancer and the
corresponding age-adjusted mortality rates (per 100000 person-years), recorded
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over the period 1970-1994 in the state of Indiana at county level (92 counties in
total). The population-at-risk in each county can be estimated with the formula:

Total number of deaths (1970-1994)

Age-adjusted mortality rate (1970-1994)
× 100000 .

Goovaerts (2006) imposed a 55×94 grid (with grid cells of 25 km2) over the map
of Indiana, leading to 3751 grid points that fall inside the map (see Figure 2a).
Next, he allocated the previous county-level population estimates to this fine235

grid, according to the 2000 census block level data. Figure 2b shows the spatial
distribution of the population-at-risk on the fine grid, which reflects the hetero-
geneous repartition of population in Indiana. These high-resolution population
estimates were kindly provided by Dr. Pierre Goovaerts (BioMedware Inc., MI,
USA) and we will use them in subsequent analysis.240
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[3.992,4.116)
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(a) Fine grid (b) Population-at-risk on grid
(log10 scale)

Figure 2: The left map shows the fine grid obtained by imposing a 55 × 94 grid over the
map of Indiana, leading to 3751 grid points (blue points). The right map shows the spatial
distribution of the population-at-risk on this fine grid (on a log10 scale).

Figure 3a shows the spatial distribution of age-adjusted mortality rates (per
100000 person-years) for lung cancer in Indiana. We use a yellow-red color
scheme for data visualization, where the class boundaries correspond to the
deciles of the original rates. Rates higher than the median tend to be more red
as they depart from it, while lower rates tend to be more yellow. Since the sizes245

of the counties in Indiana are relatively similar, it is easy to identify areas of
excess in this region. The highest rates are reported for the counties of Clark
(30.637), Johnson (30.726), and Marion (31.624), which is the most populated
county in Indiana.

To reduce the noise present in lung cancer mortality rates, we first apply the250

PGLMM approach (Lee and Durbán, 2009) with the spatial coordinates of the
county centroids as covariates, second order penalties, and 22 equally-spaced
knots (applying around one knot for every four different centroid coordinates)
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for each marginal cubic B-spline basis. Figure 3b shows the resulting smoothed
mortality risk, with range varying from 13.302 to 31.624. The maximum rates255

after smoothing are still located in counties with the highest lung cancer rates.
This situation was also pointed out by Goovaerts (2006), when he analysed these
data (at county level) with different kriging methods. For this dataset, if we
increase the number of knots in the PGLMM approach, we will obtain a similar
spatial mortality pattern to that shown in Figure 3b.260

Now we apply the CLMM approach on this dataset to obtain a continuous
mortality risk map. To do that, let us consider the number of white female
deaths by lung cancer per county as the vector of aggregated counts (y), and
the population-at-risk on the fine grid of 25 km2 cells (displayed in Figure 2b) as
the vector of exposures at fine resolution (ef). To set up the CLMM formulation,265

we use the spatial coordinates of the grid points (see Figure 2a) as covariates
at fine resolution, second order penalties, and 22 equally-spaced knots for each
marginal cubic B-spline basis. Then, we can construct the spatial composition
matrix as is described in Eq. (7). Figure 3c shows the resulting CLMM mortality

risk, which is calculated as r̂CLMM = 100000 × exp(Xβ̂ + Zα̂). Regarding the270

computing time, the estimation process took a little more than 1 minute. This
isopleth map gives a more detailed impression of the mortality distribution,
where areas of lower and higher mortality risks are clearly delineated on the
map of Indiana. Higher risk estimates are still observed in the counties of
Clark, Johnson, and Marion, while lower risk estimates are more concentrated275

in some south-western and north-eastern counties of Indiana.
To compare our proposal with other existing methods, we apply the PK

approach of Goovaerts (2006) to this dataset. Given the fine grid point uj =
(x1j , x2j), j = 1, ..., 3751, within a geographical unit vδ, the PK estimator is
obtained as a linear combination of the kernel rate r(vδ) and the rates observed
in (K − 1) neighboring units:

r̂PK(uj) =

K∑
i=1

λi(uj)r(vi),

where λi(uj) is the weight assigned to the rate r(vi) when estimating the risk at
uj . The K kriging weights are computed by solving a system of linear equations,
in which the weights λi(uj) are constrained to sum up 1, and a point-support
covariance of the risk, or equivalently a point-support semivariogram γR(h) is280

required to solve it. Since only aggregated data are available, this function can-
not be estimated directly from the observed rates. Goovaerts (2008) developed
a procedure to conduct the derivation of γR(h) from the ‘regularized’ experi-
mental semivariogram computed from areal data (i.e., ‘deconvolution’ process),
in presence of irregular geographical units and heterogeneous population distri-285

bution.
Figure 3d shows the resulting PK mortality risk, using the software indicated

above, together with the indications given in Goovaerts (2006) for the estimation
of this continuous surface. The PK approach provides a similar spatial pattern
to the CLMM approach, with some discrepancies in the north and south-east of290

13



the central counties. We should note that the application of both approaches to
this dataset produces some risk estimates at fine scale that exceed the maximum
raw lung mortality rate (31.795). For example, the maximum risk estimates for
the CLMM and PK are 34.067 and 33.896, respectively.

Figure 4 shows the standard error maps associated with the mortality risk295

maps given at the bottom of Figure 3. The PK standard errors are calculated
as the square root of the PK variances (see Goovaerts, 2006, Eq. 12). Most of
the CLMM standard errors are lower than those obtained with the PK, through
Indiana counties, showing that CLMM reduces the uncertainty.

To compare the aggregations resulting from the CLMM and PK approaches,
we can compute the corresponding AIC using the estimated means µ̂CLMM and
µ̂PK, respectively. The first one is calculated as in Eq. (6), while the elements
of the second are obtained from Goovaerts (2006, Eq. 15) as:

µ̂PK(vi) = 10−5 × e(vi)r̂PK(vi) = 10−5 ×
Pi∑
j=1

e(uj)r(uj), (24)

where Pi denotes the number of grid points uj used to discretize the county vi,300

and e(vi) =
∑Pi

j=1 e(uj), for i = 1, ..., n. The resulting AIC for the CLMM and
PK (at county level) are 163.565 and 237.394, respectively.

In order to assess the prediction performance among the mentioned ap-
proaches, we have carried out a simulation study in Section 4.

3.2. Scottish lip cancer dataset305

The Scottish lip cancer dataset (Clayton and Kaldor, 1987) has been widely
analysed in the literature. In this section, we apply the CLMM-P approach
(developed in Section 2.4) on this dataset to obtain a continuous surface that
take into account the overdispersion present in count data.

This dataset consists of the observed (y) and expected (e) number of male
cases of lip cancer, recorded in 56 counties in Scotland over the period 1975-
1980. Figure 5a shows the spatial distribution of the Standardized Mortality
Rates (SMRs) on a logarithmic scale for lip cancer incidence, which are obtained
as:

log(SMR)i = log

(
yi
ei

)
, for i = 1, ..., 56.

We see that most of the higher raw log(SMRs) are located in the north of310

Scotland; specifically in the counties of Caithness, Ross and Cromarty, Skye
and Lochalsh, and Banff and Buchan.

In order to apply the CLMM approach, we impose a 120×120 fine grid over
the map of Scotland, leading to 3855 grid points that fall inside the map. Since
the vector of exposures is unavailable at this fine scale, we estimate it using the
naive approach described in Section 2.2. We denote this vector as ênaive. To set
up the CLMM formulation, we use 25 equally-spaced knots for each marginal
cubic B-spline basis and second order penalties. Then, the corresponding spatial
composition matrix is constructed as is described in Eq. (7). Figure 5b shows
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[26.069,31.795]
[25.091,26.069)
[23.307,25.091)
[22.196,23.307)
[21.162,22.196)
[19.971,21.162)
[18.811,19.971)
[17.945,18.811)
[16.648,17.945)
[9.083,16.648)

(a)3Lung3cancer3mortality
(rate3/31000003person-year) (b)3PGLMM3

(c)3CLMM3 (d)3PK

1

2

3 1: Marion
2: Johnson
3: Clark

Figure 3: Map of lung cancer mortality rates in Indiana, and the risk estimated by different
approaches. The top-left map displays the age-adjusted mortality rates per 100000 person-
years recorded over the period 1970-1994, and the top-right map shows the smoothed mortality
risks resulting from the PGLMM approach. The bottom maps show the smoothed mortality
risks estimated using the CLMM (bottom-left) and PK (bottom-right) approaches. The color
legend applies to all maps; the class boundaries correspond to the deciles of the original rates.

the resulting CLMM estimates for the log(SMR) at the selected fine grid (that

is, Xβ̂ + Zα̂). Regarding the computing time, the estimation process took a
little less than 2 minutes. From Figure 5b, we observe there exist an increasing
trend from the more central counties to the ones of the coast, and also from
south to north. Moreover, using the previous point estimates, we can obtain a
smooth trend for the log(SMR) at county level as follows:

log(SMR)CLMM = log

(
µ̂CLMM

e

)
, (25)

where µ̂CLMM is obtained as in Eq. (6), with ef = ênaive. Figure 5c shows these
estimates for the log(SMR) at county level.
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[4.676,8.048]
[3.817,4.676)
[3.661,3.817)
[3.525,3.661)
[3.257,3.525)
[2.368,3.257)
[1.885,2.368)
[1.705,1.885)
[1.554,1.705)
[0.761,1.554)

(a) sd CLMM (b) sd PK 

Figure 4: Standard error maps for lung cancer mortality risk in Indiana, estimated by (a)
CLMM and (b) PK approaches.

Now we apply the CLMM-P approach to this dataset. For that we use
the same settings as in the CLMM approach. Figure 5d shows the resulting
CLMM-P estimates for the log(SMR) at the selected fine grid, where we include

the estimated individual random effects, δ̂, at the fine scale to take into account
the overdispersion. This is done by adding the term C−δ̂ to the estimated
spatial trend (that is, Xβ̂+ Zα̂+ C−δ̂), where C− denotes the Moore-Penrose

inverse of C. This matrix can be easily computed as C− =
(
R−1C

)′
, where R

is a diagonal matrix whose elements are the sums of the rows of C. Regarding
the computing time, the estimation process took a little more than 2 minutes.
The map displayed in Figure 5d presents some differences with respect to the
map obtained with the CLMM approach, especially in the north of Scotland.
Similarly to what we did before, we can obtain a smooth trend for the log(SMR)
at county level, from the CLMM-P estimates, as:

log(SMR)CLMM-P = log

(
µ̂CLMM-P

e

)
, (26)

where µ̂CLMM-P is obtained as in Eq. (21), with ef = ênaive. These estimates315

for log(SMR) at county level are displayed in Figure 5e.
To compare our proposal with other existing methods, we apply the PK

approach to this dataset. Figure 5f shows the resulting PK estimates for the
log(SMR) at the selected fine grid, which is similar to that produced by the
CLMM approach. Also, we can obtain a smooth trend for the log(SMR) at
county level, from the PK estimates, as:

log(SMR)PK = log

(
µ̂PK

e

)
, (27)

where µ̂PK is obtained as in Eq. (24). These estimates for log(SMR) at county
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level are displayed in Figure 5g.
Figure 6 shows the standard error maps associated with the middle row of

Figure 5. In this case, we observe that higher errors are located in the islands320

of the north and north-west of Scotland. In these parts, the errors associated to
the CLMM and CLMM-P approaches are greater than those associated with the
PK approach. The higher standard errors in CLMM and CLMM-P approaches
might be due to the presence of the islands where there is a discontinuity in
the boundaries (the tensor product smooth tends to interpolate the sea where325

no data are available leading to larger standard errors), while PK model imple-
mented in Spacestat 4.0 uses an areal deconvolution process with the definition
of a spatial weight matrix with a minimum distance to ensure that all units will
be connected with at least one other unit (Jacquez et al., 2014). Some advances
in spline smoothing can be studied to include special penalties to account for330

smoothing in complex and irregular domains (see Ramsay, T., 2002; Wood et al.,
2008).

In order to compare the aggregations resulting from the CLMM, CLMM-
P and PK approaches, we can compute the AIC using the estimated means
µ̂CLMM, µ̂CLMM-P and µ̂PK already calculated in Eq. (25)-(27), respectively.335

The resulting AIC for the CLMM, CLMM-P and PK (at county level) are 110.8,
89.8, and 186.7, respectively, showing that the CLMM-P is more appropriate in
presence of overdispersion.

4. Simulation study

In this section we perform a simulation study to compare the prediction340

performance of the CLMM approach with the ATP Poisson kriging (PK) of
Goovaerts (2006). For that, we use the lung cancer dataset described in Sec-
tion 3.1.

The simulation study was conducted as follows:

1. The continuous mortality surface obtained with the PK approach was345

considered here as the true underlying mortality trend over the fine grid
of 25 km2 cells in Indiana. We denoted these mortality rates as r(uj),
j = 1, ..., 3751, where uj represent the coordinates of the fine grid points.

2. These quantities and the population-at-risk over each 25 km2 cell of the
fine grid (denoted as e(uj)) were used to calculate the mortality rate for
each county vi, i = 1, ..., 92:

r(vi) =
1

e(vi)

Pi∑
j=1

e(uj)r(uj),

where Pi denotes the number of points uj used to discretize the county

vi, and e(vi) =
∑Pi

j=1 e(uj).350

3. 100 realizations of the number of deaths recorded over each county were
generated by random drawing of a Poisson distribution whose mean pa-
rameter is r(vi)× e(vi).
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Figure 5: Map of (log) standardized mortality rates in Scotland, and the (log) mortality risks
estimated by different approaches. The top map shows the log(SMR) recorded over the period
1975-1980 for 56 counties. The middle maps show the smoothed (log) mortality risks at a
selected fine grid, which are resulting from the CLMM, CLMM-P, and PK approaches. The
bottom maps show the resulting aggregation of these point estimates. The color legend applies
to all maps; the class boundaries correspond to the deciles of the log(SMR).
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4. For each realization, we apply the CLMM and PK approaches, using the
population-at-risk over the fine grid of 25 km2 cells as the vector ef of355

exposures at the fine resolution.

For all l = 1, ..., 100 realizations, the predicted risks r
(l)
P (uj) obtained from

both approaches were compared to the underlying risk r(uj), j = 1, ..., 3751,
using the following criteria:

• Mean error (ME):

ME(l) =
1

W

3751∑
j=1

e(uj)
(
r
(l)
P (uj)− r(uj)

)
with W =

3751∑
j=1

e(uj)

• Mean absolute error (MAE):

MAE(l) =
1

W

3751∑
j=1

e(uj)
∣∣∣r(l)P (uj)− r(uj)

∣∣∣ with W =

3751∑
j=1

e(uj)

• Root mean squared error (RMSE):

RMSE(l) =

√√√√ 1

W

3751∑
j=1

e(uj)
(
r
(l)
P (uj)− r(uj)

)2
with W =

3751∑
j=1

e(uj)

In all these criteria, the prediction error at each grid point uj is weighted360

according to the population size at that location. This was done to penalize
more the errors that affect a larger population (Goovaerts, 2006). Notice that
for the ME criterion, it could happen that positive and negative errors are
canceled out so that the true error is underestimated. We have included ME
criteria in order to follow the same comparisons as in Goovaerts (2005).365

Figure 7 shows these resulting errors via box-plots, in which we observe that
our approach gives better prediction accuracy than the PK approach, for each
criterion. Table 1 gives the averages and the standard deviations of the resulting
errors (for each criterion) derived from the simulation study. Notice that these
results are obtained from a region where the geographical units (the counties)370

are similar in shape and size. We have conducted an additional simulation
study, in which the units vary greatly in shape and size (see Appendix A). For
that case, we have considered the Scottish lip cancer dataset. This simulation
study shows how the performance of the CLMM is also satisfactory for irregular
geographical units.375

5. Discussion

We presented and applied the composite link mixed model for spatially ag-
gregated data to the disaggregation of mortality rates. It provides a flexible
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Figure 6: Standard error maps for lip cancer incidence in Scotland, estimated by (a) CLMM,
(b) CLMM-P and (c) PK approaches.

Approach ME MAE RMSE

avg std avg std avg std

CLMM 0.0000 0.0006 0.9687 0.0005 1.2553 0.0006

PK 0.0062 0.0005 1.0197 0.0011 1.3514 0.0013

Table 1: Performance comparison of CLMM and PK approaches, using different criteria:
mean errors (ME), mean absolute errors (MAE), and root mean squared errors (RMSE).
These errors are summarized in terms of the average (avg) and standard deviation (std).

descriptive tool for epidemiological studies, when the aim is to visualize the
spatial distribution of certain rates at a desirable fine resolution. The CLMM380

approach filters the existing noise in raw rates, which is caused by the small
number problem, and allows the creation of more refined mortality maps by in-
cluding the distribution of the exposure variable at fine resolution. The resulting
CLMM estimates may be linked with potential risks factors that are available
over the fine resolution, allowing a posterior correlation analysis between them.385

Under this framework, we included individual random effects at the aggregated
scale to take into account the overdispersion problem, commonly occurring in
count data. These individual random effects can be easily included at the fine
scale (for graphical representation) by means of the Moore-Penrose inverse of
the composition matrix. Since the CLMM is flexible, no assumptions about the390

covariance structure of the spatial process should be made (in contrast to kriging
methods). The penalty on the coefficients accounts for estimating the spatial
trend and the amount of smoothing on each longitude and latitude dimensions.
For irregular domains (such as it was the case of the northern counties and the
presence of discontinuities or islands) a possible solution in the CLMM approach395

is the use of special penalties over complex domains as in Wood et al. (2008),
where smoothers are designed to not smooth across boundary features.
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Figure 7: Performance comparison between CLMM and PK approaches using different crite-
ria: mean errors (top-left), mean absolute errors (top-right), and root mean squared errors
(bottom).

We used the statistical software R (R Core Team, 2015) for data analysis with
the CLMM and CLMM-P approaches. Our plan is to implement the presented
methodology in a future R package, in such a way that it can be accessible by400

any user. We provided some indications of computing time for the estimation
of mortality trends at fine resolution in Section 3. Indeed, computation times
will be reduced if we disaggregate at a lower spatial resolution (i.e. a less fine
grid). A possibility to improve the computational speed is to accommodate the
generalization of the Schall algorithm (Schall, 1991) presented by Rodŕıguez-405

Álvarez et al. (2015), into a CLMM context.
In the presented applications, if we increase the number of knots, we obtain

similar continuous surfaces to those shown in this paper. On the contrary, if we
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choose very few knots, our approach will not be able to capture properly the
underlying spatial trend behind aggregated data. For further details about the410

selection of knots in P-splines see Eilers and Marx, 1996, and Eilers et al., 2015.
We performed a simulation study to compare the ATP Poisson kriging of

Goovaerts (2006) with our proposal, using aggregated data measured over the 92
counties of Indiana and the high-resolution population estimates over a fine grid.
The simulation results showed that our proposal is competitive with respect to415

this geostatistical technique. An additional simulation study using the Scottish
lip cancer dataset, where the counties greatly vary in shape and size, is detailed
in Appendix A. Here while the accuracy of the CLMM model is better than PK,
further research can be done to improve the smoothing in irregular domains.

Finally, and as future work, the proposed methodology can be generalized420

to the spatio-temporal setting, in which counts are also aggregated in time (i.e.
by years or months). In this context, the implementation of efficient and fast
algorithms for the estimation procedure of CLMMs will be critical. The resulting
estimates will be displayed as dynamic maps, and will allow the comparison of
mortality in the finest spatio-temporal resolution.425
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Appendix A. Simulation study of Scottish Lip Cancer dataset

In this appendix, we include an additional simulation study to compare the
prediction performance among CLMM, CLMM-P and PK, when the geograph-440

ical units vary considerably in shape and size. For that, we use the Scottish lip
cancer dataset described in Section 3.2. Here we use the estimated vector of
naive exposures as the true exposures at fine grid (that is, ef = ênaive).

The simulation study was conducted in a similar fashion as in Section 4,
where the continuous mortality risk surface obtained with the PK approach was445

considered here as the true underlying mortality trend (see Figure 5f). Thus,

for the resulting 100 realizations, the predicted risks r
(l)
P (uj) obtained from the

three approaches were compared to the true underlying mortality risk, using
the ME, MAE and RMSE criteria. Figure A.8 shows these resulting errors via
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box-plots, in which we observe the CLMM and CLMM-P approaches give better450

prediction accuracy than PK, for each criterion. Note that, in this simulation
setting, we did not include any overdispersion, and hence both CLMM and
CLMM-P approaches are very similar. Table A.2 gives the averages and the
standard deviations of the resulting errors (for each criterion) computed from
this additional simulation study.455

Approach ME MAE RMSE

avg std avg std avg std

CLMM-P 0.0040 0.0464 0.1523 0.0232 0.2748 0.0512

CLMM 0.0012 0.0463 0.1493 0.0216 0.2749 0.0505

PK 0.0552 0.0423 0.2041 0.0277 0.3191 0.0460

Table A.2: Performance comparison of CLMM-P, CLMM and PK approaches, using different
criteria: mean errors (ME), mean absolute errors (MAE), and root mean squared errors
(RMSE). These errors are summarized in terms of the average (avg) and standard deviation
(std).
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Figure A.8: Performance comparison between CLMM-P, CLMM and PK approaches using
different criteria: mean errors (top-left), mean absolute errors (top-right), and root mean
squared errors (bottom).
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