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Abstract

Mortality data provide valuable information for the study of the spatial distribution of mortality

risk, in disciplines such as spatial epidemiology, medical demography, and public health. Howe-

ver, they are often available in an aggregated form over irregular geographical units, hindering

the visualization of the underlying mortality risk and the detection of meaningful patterns. Also,

it could be of interest to obtain mortality risk estimates on a finer spatial resolution, such that they

can be linked with potential risk factors — in a posterior correlation analysis — that are usually

measured in a different spatial resolution than mortality data. In this paper, we propose the use

of the penalized composite link model and its representation as a mixed model to deal with these

issues. This model takes into account the nature of mortality rates by incorporating the popula-

tion size at the finest resolution, and allows the creation of mortality maps at a desirable scale,

reducing the visual bias resulting from the spatial aggregation within original units. We illustrate

our proposal with the analysis of several datasets related with deaths by respiratory diseases,

cardiovascular diseases, and lung cancer.
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1 Introduction

Disease maps deal with public health data that are usually available in an aggregated form over

geographical units, like counties, districts, and municipalities. This is done to protect patients’

privacy, making impossible the reconstruction of personal information. Epidemiologists, health

care practitioners, and other related researchers use these data to study the spatial distribution of

mortality caused by an specific disease, and thus identify areas of excess and their potential risk

factors. Choropleth maps are then commonly used to display such distribution but they must be

interpreted with caution, because the “small number problem” effect (Waller and Gotway, 2004)

— that often affects health data — leads to a large uncertainty about rates calculated from small or

sparsely populated areas, thus hindering the detection of meaningful spatial patterns. Another

problem that could arise is the spatial misalignment between potential risk factors and health

data: in general, the former are available on a finer spatial resolution than the latter. For example,

most deprivation indices are built on the smallest possible geographical units of a certain region

(see Rey et al., 2009; Salmond and Cramptom, 2012) or even on a fine grid (Caudeville et al.,

2012). Environmental agents (such as air pollution, or electric and magnetic fields, to name a few)

constitute examples of risk factors that vary continuously in space. Consequently, this situation

prohibits their direct correlation analysis that is a critical step in a disease control intervention,

which includes the implementation of appropriate control activities and the resource allocation

of health funds. Therefore, it is important to develop spatial methodologies that circumvent those

drawbacks, which filter the noise caused by the small number problem and allow the creation of

mortality maps, from aggregated data, at a resolution compatible with the spatial support of risk

factors.

It is noteworthy, in the disease mapping literature, the amount of statistical tools that deal

with the reduction of the noise in mortality rates associated to geographical units (see Besag et al.,

1991; MacNab and Dean, 2002; Fahrmeir et al., 2004; Goovaerts, 2005, 2006b; Lee and Durbán,

2009; among others). All of them give smoothed mortality estimates that are assumed constant

over each unit, yielding a coarse spatial trend. In turn, several works about spatial disaggre-

gation of health data appeared more recently. In a geostatistical framework, Kelsall and Wake-

field (2002) obtained pointwise posterior medians of the underlying continuous risk surface, for

colorectal cancer mortality in UK district of Birmingham, via a Gaussian random field (GRF)

model. Goovaerts (2006a) generalized the Poisson kriging algorithm given by Monestiez et al.

(2005, 2006), in which incorporates the size and shape of the units, as well as the population

density, into the filtering of noisy mortality rates, and allows the mapping of the corresponding
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mortality risk at a fine resolution. The performance of his approach (called area-to-point Poisson

kriging) was compared with two geostatistical methods that allow the creation of continuous

mortality maps from aggregated data: the first one corresponds to the simple interpolation of

raw rates to the nodes of a fine grid using ordinary kriging, and the second one is the approach

proposed by Berke (2004), in which the raw rates are replaced by their global empirical Bayes

estimates before the interpolation process. Local Bayes estimates were also considered in the

analysis, to attenuate the smoothing effect produced by the global mean term involved in the

calculation of those Bayes estimates. The performance comparison results showed that the area-

to-point Poisson Kriging give more detailed spatial trends than the other geostatistical methods,

when the geographical units vary widely in size and shape. Lately, and from a Bayesian inferen-

tial viewpoint, Diggle et al. (2013) used the class of log-Gaussian Cox processes (as models for

spatial point process data) to construct a continuous map of lung cancer mortality risks in the

Castile-La Mancha, region of Spain, from spatially discrete data.

In this paper, we propose the use of the penalized composite link model of Eilers (2007) for

the case of spatial aggregation, and its representation as a mixed model. The resulting model,

which we call penalized composite link mixed model, allows us to create mortality maps from

aggregated health data at a fine spatial resolution, and to incorporate finer scale information into

the filtering of noisy mortality rates. We illustrate two cases of spatial disaggregation: from coarse

geographical units to smaller units (area-to-area (or ATA) case), and from coarse geographical

units to a fine grid (area-to-point (or ATP) case). We will obtain a more refined spatial trend

(represented as a choropleth map) in the first case, and a continuous surface (or isopleth map)

without spatial boundaries for the second. The advantage of producing isopleth maps is to reduce

the visual bias associated with the interpretation of choropleth maps (Cressie, 1993), which is

produced by the variation in shape and size of the geographical units. Also, we illustrate the case

where the aggregated count data have an array structure. In this context, we use the generalized

linear array model (or GLAM) arithmetic given in Currie et al. (2006) and Eilers et al. (2006), for

a fast and efficient implementation of our proposal in standard software as, for example, R or

MATLAB c⃝.

The rest of this paper is organized as follows. In Section 2, we present our proposal: the pena-

lized composite link mixed model (or more briefly, PCLMM) for spatially aggregated data, and

we indicate how the spatial disaggregation cases, which we discussed above, are accommodated

by our model. Also, we provide in this section a parameter estimation approach and GLAM

algorithms for the PCLMM. In Section 3, we illustrate our methodology for the case of aggrega-
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ted count data with array structure, using American male death counts by respiratory diseases,

and for ATA and ATP cases, using mortality data related with female deaths by cardiovascular

diseases in the community of Madrid recorded over the period 2001-2007. Also, in this section,

we compare the performance of our proposal (for the ATP case) with the ATP Poisson kriging of

Goovaerts (2006a). For that purpose, we use age-adjusted lung cancer mortality rates for white

females in the state of Indiana recorded over the period 1970-1994. Finally, we end up with a short

discussion in Section 4.

2 The penalized composite link mixed model

2.1 The model

In the one-dimensional case, suppose that a vector of aggregated counts y follows a Poisson

distribution with mean vector µ. These counts can be seen as indirect observations of a latent

process that we want to model. The penalized composite link model (PCLM) approach of Eilers

(2007) offers an elegant way to do this, by considering µ composed by latent expectations. The

Poisson PCLM is given by:

µ = Cγ = C exp(Bθ), (2.1)

where γ represents the mean vector of the latent process at a desirable fine resolution, C is

the composition matrix that describes how these latent expectations are combined to yield µ,

B = B(x) is a B-spline basis constructed from a covariate, x, at fine resolution, and θ is the asso-

ciated vector of regression coefficients. Smoothness is imposed over adjacent regression coeffi-

cients, by subtracting a roughness penalty 1
2θ

′Pθ from the log-likelihood of y, where P = λD′D

is based on a difference matrix D of order d, and a non-negative parameter λ that controls the

amount of smoothness. The estimation of the model (2.1) is carried out by a penalized version of

the iteratively reweighted least squares (IRWLS) algorithm, where an information criterion (such

as AIC and BIC) is used to choose an optimal value for λ. Several applications of the PCLM can

be found in Eilers (2012).

For illustration purposes, consider the death counts of Danish females in 2006, from ages 1 to

100 (these data was taken from the Human Mortality Database, 2015). In Figure 1, the histogram

reports these death counts as totals of five-year age classes (that is, the aggregated counts y), while

the points depict these death counts for each one-year age class. In this case, x = (1, ..., 100)′, γ
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Figure 1: Death counts of Danish females in 2006, from ages 1 to 100, represented as totals of five-year age classes

(histogram) and as one-year age classes (points). The solid blue line represents the estimated distribution using the

Poisson PCLM approach (BIC was used here as the optimal selection criterion for λ).

represents the vector of expected numbers in one-year age classes and has 100 elements. The

expected mean vector µ has 20 elements, while the composition matrix C has 20 rows and 100

columns. Most of the elements of C are zeroes, but in the first row we find a 1 in columns 1 to 5, in

the second row we find a 1 in columns 6 to 10, and so on. If we apply the Poisson PCLM approach

to this aggregated count data y, we obtain the blue smooth curve in Figure 1. We observe that this

curve follows the trend indicated by the points, reflecting graphically the potential of the model

(2.1) when we want to estimate the underlying distribution behind aggregated count data.

Now, in a two-dimensional setting, the aggregated counts y can be classified into two catego-

ries: (i) as areal or regional data (that is, they are available over n non-overlapping geographical

units) or (ii) as array data (that is, they are recorded in a coarse grid of values as, for example,

mortality tables classified by age and year classes with different levels of aggregation). Since our

goal is to estimate the underlying mortality trend behind these aggregated data, we extend the

PCLM (2.1) to the two-dimensional setting, and representing it as a mixed model, as follows.

First, suppose that y are classified as areal data. Let x1 and x2 be the geographical coordinates

(longitude and latitude, respectively) of length m that define the desirable fine spatial resolution.

Then, in this new context, the regression basis B is defined as the Box-product or “row-wise”

Kronecker product (Eilers et al., 2006) of the marginal B-spline bases B1 = B(x1) and B2 = B(x2)
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(of dimension m× c1 and m× c2, respectively), denoted by !:

B = B2!B1 = (B2 ⊗ 1′
c1)⊙ (1′

c2 ⊗B1), (2.2)

where the matrix operators ⊗ and ⊙ represent the Kronecker and the Hadamard (or “element-

wise”) products, respectively. When y are classified as array data, the adequate regression basis

B correspond to,

B = B2 ⊗B1, (2.3)

where now the B-spline bases B1 and B2 are constructed from two covariates, x1 and x2, of

lengths m1 and m2, respectively, each of one at a desirable fine resolution. In either case, the

construction of B1 and B2 depend on the number of selected (equally spaced) knots for each

coordinate, ndx1 and ndx2, and the degree of the B-splines used, bdeg1 and bdeg2. The two-

dimensional penalty matrix is given by:

P = λ1Ic2 ⊗P1 + λ2P2 ⊗ Ic1 , (2.4)

where Pi = D′
iDi is the marginal penalty matrix based on the difference matrix Di of order di,

for i = 1, 2. The penalty matrix (2.4) allows for anisotropy (i.e., different amount of smoothing for

each dimension) and is valid whether we are dealing with areal or array data, since its definition

is independent of data structure. Note here that we have to make choices about ndxi, bdegi, and

di, with i = 1, 2. For ndx1 and ndx2, it is enough to choose a moderate number of knots that cover

the study area (up to a maximum of about 40 knots as suggested by Ruppert, 2002), and for the

other quantities is often sufficient to use cubic B-splines (that is, bdeg1 = bdeg2 = 3) and quadratic

penalties (d1 = d2 = 2) (see Eilers and Marx, 1996, and Currie and Durbán, 2002, for a further

discussion).

Considering the regression basis (2.2) for areal data (or (2.3) for array data) and its associated

regression coefficients θ, it was shown in Lee and Durbán (2009) that the expression Bθ can be

reformulated as Bθ = Xβ + Zα, using a suitable orthogonal transformation matrix T such that

BT = [X : Z] and T′θ =
[β
α

]
, where X and Z are the fixed and random effects matrices, and β and

α are their associated coefficients, respectively. The construction of these mixed model matrices,

X and Z, is described below (for more details, see Lee and Durbán, 2009 and Lee, 2010, pp. 63-65).

Consider the singular value decomposition (SVD) of the marginal penalty matrix Pi in (2.4),

Pi = UiΣiU
′
i,

where Ui is the matrix of eigenvectors, and Σi is a diagonal matrix that contains the eigenvalues
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of the SVD of Pi, for i = 1, 2. Each matrix Ui can be splitted in two parts:

Ui = [Uin : Uis],

where Uin contains the null part (of dimension ci × di) and Uis contains the non-null part of the

decomposition (of dimension ci × (ci − di)), for i = 1, 2. With these partitions, we can decompose

each marginal penalty matrix as follows:

Pi = [Uin : Uis]

[
Odi

Σ̃i

]
[Uin : Uis]

′,

where Odi denotes a di × di square matrix of zeroes, and Σ̃i is a diagonal matrix that contains the

ci−di positive eigenvalues, for i = 1, 2. Then, defining the matrices Xi = BiUin and Zi = BiUis,

for i = 1, 2, the mixed model matrices for areal data are obtained as:

X = X2!X1, (2.5)

Z = [Z2!X1 : X2!Z1 : Z2!Z1], (2.6)

while the mixed model matrices for array data are obtained as in (2.5) and (2.6), replacing the

“row-wise” Kronecker products ! by Kronecker products ⊗. Moreover, due to the transformation

matrix T and the penalty matrix given in (2.4), it can be shown that the mixed model penalty is

the block diagonal matrix:

F =

⎡

⎢⎣
λ2Σ̃2 ⊗ Id1

λ1Id2 ⊗ Σ̃1

λ1Ic2−d2 ⊗ Σ̃1 + λ2Σ̃2 ⊗ Ic1−d1

⎤

⎥⎦ , (2.7)

with matrices Σ̃i, i = 1, 2, previously defined.

Therefore, we can extend the model given in (2.1) by modifying γ as follows:

µ = Cγ = Ce exp(Xβ + Zα), with α ∼ N (0,G) , (2.8)

where X and Z are the mixed model matrices defined above (depending on data structure), e is a

vector of exposures at the fine resolution, and G is the covariance matrix of random effects given

by G = σ2
ϵF

−1, where σ2
ϵ = 1 (in Poisson case) and F is the penalty matrix defined in (2.7). We

refer to (2.8) as the (Poisson) penalized composite link mixed model (or more briefly, PCLMM),

which allows to incorporate population information at the fine spatial resolution and to include

specific random effects or further correlation structure if necessary.

The vector e in (2.8) has to be known in advance; otherwise, it has to be estimated. If e is

available at the aggregated level, we can obtain exposure estimates at the required disaggregated
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level assuming that these aggregated exposures are evenly distributed throughout the finer spa-

tial resolution. The resulting disaggregated exposures have to sum up the same quantity on each

coarse area that conform the coarse spatial resolution. We call these resulting estimates as naive

estimates and we will use them in Section 3 for illustrative purpose.

The composition matrix C in (2.8) is fixed and its structure depends on the process that ge-

nerates the aggregated data. Note that if we take C as the identity matrix, then µ = γ in (2.8).

In such case, the PCLMM is reduced to the penalized generalized linear mixed model (or more

briefly, PGLMM) approach of Lee and Durbán (2009) for Poisson data. On the other hand, when

we are dealing with array data, the composition matrix C can be obtained as C = C2⊗C1, where

C1 and C2 are the composition matrices associated with the (disaggregated) covariates x1 and

x2.

Finally, in Section 1 we pointed out that the PCLMM approach can handle two types of spa-

tial disaggregation of interest: area-to-area and area-to-point cases. For the former case, we can

choose x1 and x2 as the coordinates of the centroids of the smaller units, and thus the elements

of the associated composition matrix C become:

cij =

{
1 if (x1j , x2j) belongs to unit i
0 otherwise

(2.9)

where i = 1, ..., n, and j = 1, ...,m. For the later case, the coordinates x1 and x2 correspond to the

dense grid points that fall inside coarse units, and may be known by the user in advance or not.

The composition matrix in this case is constructed in a similar fashion as in (2.9).

2.2 Parameter estimation for PCLMM

Consider the joint density function of y in a PCLMM context, that is:

f(y|α) = exp {y′ log(µ)− 1′µ− 1′ log(Γ (y + 1))} , (2.10)

where µ = Cγ, γ = e exp(Xβ + Zα), and α ∼ N (0,G). From (2.7), we see that G = σ2
ϵF

−1

depends on two smoothing parameters, λ1 and λ2, which are interpreted as ratio of variances that

have to be estimated. In a mixed model framework, numerical integration techniques are usually

demanded to evaluate (2.10) for a full likelihood analysis. To deal with this inconvenient, we use

the penalized quasi-likelihood approach (PQL) of Breslow and Clayton (1993) that is described

below.
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Taking into account the joint density function in (2.10) and for given values of λ1 and λ2, we

obtain estimates for β and α by maximizing the penalized log-likelihood:

ℓpen = log {f(y|α)}− 1

2
α′G−1α. (2.11)

Differentiating (2.11) with respect to βk and αl, we obtain:

∂ℓpen
∂βk

=
n∑

i=1

⎛

⎝(yi − µi)
1

µi

m∑

j=1

cijxjkγj

⎞

⎠ , k = 1, ..., p; (2.12)

∂ℓpen
∂αl

=
n∑

i=1

⎛

⎝(yi − µi)
1

µi

m∑

j=1

cijzjlγj

⎞

⎠−G−1
i α, l = 1, ..., r, (2.13)

where G−1
i denotes the ith row of matrix G−1. Writing the terms 1

µi

∑m
j=1 cijxjkγj in (2.12) and

1
µi

∑m
j=1 cijzjlγj in (2.13) as x̆ik and z̆il, respectively, and equating the expressions above to zero,

we obtain:
n∑

i=1

(yi − µi)x̆ik = 0, for k = 1, ..., p; (2.14)

n∑

i=1

(yi − µi)z̆il = G−1
i α, for l = 1, ..., r. (2.15)

Moreover, (2.14) and (2.15) can be rewritten, in matrix form, as:

X̆′ (y − µ) = 0; (2.16)

Z̆′ (y − µ) = G−1α, (2.17)

where X̆ = W−1CΓX and Z̆ = W−1CΓZ, with W = diag(µ) and Γ = diag(γ). Defining the

working vector:

z = X̆β + Z̆α+W−1 (y − µ) , (2.18)

the solution of (2.16) and (2.17) via Fisher scoring algorithm (see Green, 1987) can be expressed as

the iterative solution of the system:
[
X̆′WX̆ X̆′WZ̆

Z̆′WX̆ Z̆′WZ̆+G−1

][
β

α

]
=

[
X̆′Wz

Z̆′Wz

]
. (2.19)

This yields to a modified version of the standard mixed model estimators:

β̂ = (X̆′V−1X̆)−1X̆′V−1z, (2.20)

α̂ = GZ̆′V−1(z − X̆β̂), (2.21)

where:

V = W−1 + Z̆GZ̆′. (2.22)
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Conditioning on the estimates obtained in (2.20) and (2.21), the smoothing parameters λ1 and λ2

can be estimated by maximizing the residual maximum log-likelihood (REML):

− 1

2
log |V|− 1

2
log |X̆′V−1X̆|− 1

2
z′(V−1 −V−1X̆(X̆′V−1X̆)−1X̆′V−1)z. (2.23)

Therefore, the PQL solution is achieved by iteration between (2.20), (2.21), and (2.23), until con-

vergence. The following useful equivalences can be used in the iterative procedure (Searle et al.,

1992, p. 453):

|V| = |W|−1 |G| |G−1 + Z̆′WZ̆|, (2.24)

V−1 = W −WZ̆(G−1 + Z̆′WZ̆)−1Z̆′W. (2.25)

Finally, it is possible to approximate the covariance matrix of β̂ and α̂ by its Bayesian coun-

terpart. Following the work of Lin and Zhang (1999), the approximate covariance matrix of
[β̂
α̂

]
is

given by

M =

[
X̆′WX̆ X̆′WZ̆

Z̆′WX̆ Z̆′WZ̆+G−1

]−1

, (2.26)

which corresponds to the inverse of the matrix on the left-hand side of equation (2.19). Therefore,

we can obtain approximate standard errors for η̂ = Xβ̂ + Zα̂, using the square root of diagonal

elements of Var(η̂), which are obtained as:

Var(η̂i) = diag([X : Z]M[X : Z]′)ii, (2.27)

with M defined in (2.26).

2.2.1 Array methods for PCLMM

When we are dealing with the estimation of the underlying distribution in several dimensions,

we are susceptible to present runaway problems with storage and computational time. In the case

of data arranged in multidimensional grids, it is possible to circumvent these problems using the

generalized linear array model (or GLAM) algorithms developed by Currie et al. (2006) and Eilers

et al. (2006). In this section, we show the use of GLAM algorithms in the PCLMM context, when

the aggregated data have array structure. In Section 2.2, we proposed the use of the restricted (or

residual) maximum log-likelihood (REML) for the estimation of the variance parameters. Given

(2.23) and the definitions of V, |V| and V−1 in (2.22), (2.24), and (2.25), we may use the GLAM al-

gorithms for a fast and efficient computation of the matrix cross-products: Z̆′WZ̆, X̆′WZ̆, X̆′Wz,

Z̆′Wz, etc., and estimate the variance components by REML.

10
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To illustrate the implementation of the GLAM algorithms, we divide the REML in four parts

as:

−1

2
log |V|︸ ︷︷ ︸

part I

−1

2
log |X̆′V−1X̆|︸ ︷︷ ︸

part II

−1

2
(z′V−1z︸ ︷︷ ︸

part III

− z′V−1X̆(X̆′V−1X̆)−1X̆′V−1z︸ ︷︷ ︸
part IV

).

Here, we use some GLAM notation and definitions proposed by Currie et al. (2006) and Eilers

et al. (2006), as for example, the row tensor of two matrices, G, and the rotated H-transform of an

array by a matrix, ρ (for their definitions, see Appendix).

Part I: Array computation of log |V|

Given the covariance matrix G = σ2
ϵF

−1, with σ2
ϵ = 1 (Poisson case) and F defined in (2.7), and

considering (2.24), the term log |V| can be written as:

log |V| = − log |W|+ log |F−1|+ log |F+ Z̆′WZ̆|. (2.28)

Since W is a diagonal matrix and F is a block-diagonal matrix, the first two terms in (2.28) are cal-

culated as − log |W| = −
∑

log(µi) and log |F−1| = −
∑

log(Fii), where Fii denote the diagonal

elements of F.

For the computation of Z̆′WZ̆ in (2.28), note that we can reduce this expression as:

Z̆′WZ̆ = (CΓZ)′W−1(CΓZ). (2.29)

Since the composition matrix C is given by C = C2⊗C1 and the model matrix Z can be rewritten

as Z = [Z2 ⊗ X1 : Z̃2 ⊗ Z1], where Z̃2 = X2 ⊗ Z2, the product of matrices CΓZ in (2.29) can be

computed as:

CΓZ ≡ [ρ(G(Z2,C
′
2)

′, ρ(G(X1,C
′
1)

′, Γ̃)) : ρ(G(Z̃2,C
′
2)

′, ρ(G(Z1,C
′
1)

′, Γ̃))], (2.30)

where Γ̃ is a matrix of dimension m1 ×m2, whose entries are the elements of the diagonal of Γ,

that is, Γ̃ is an arrangement of the vector γ.

Part II: Array computation of log |X̆′V−1X̆|

Using the equivalence (2.25), we can rewrite X̆′V−1X̆ as:

X̆′V−1X̆ = X̆′WX̆− X̆′WZ̆(F+ Z̆′WZ̆)−1Z̆′WX̆. (2.31)
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Since Z̆′WZ̆ was calculated previously and Z̆′WX̆ = (X̆′WZ̆)′, we only need to compute the

expressions X̆′WX̆ and X̆′WZ̆ in (2.31). Note that we can reduce them as:

X̆′WX̆ = (CΓX)′W−1(CΓX), (2.32)

X̆′WZ̆ = (CΓX)′W−1(CΓZ). (2.33)

The expression CΓZ was calculated in (2.30). Considering the model matrix X = X2 ⊗ X1, the

expression CΓX, which appears in (2.32) and (2.33), can be computed as:

CΓX ≡ ρ(G(X2,C
′
2)

′, ρ(G(X1,C
′
1)

′, Γ̃)), (2.34)

with Γ̃ defined above.

Part III: Array computation of z′V−1z

Given (2.25), we can write z′V−1z as:

z′V−1z = z′Wz − z′WZ̆(F+ Z̆′WZ̆)−1Z̆′Wz, (2.35)

where z′Wz is calculated as
∑

µiz2i . We can rewrite the expression z′WZ̆ in (2.35) as:

z′WZ̆ = z′CΓZ,

where CΓZ was calculated in (2.30).

Part IV: Array computation of z′V−1X̆(X̆′V−1X̆)−1X̆′V−1z

We already shown how to compute X̆′V−1X̆ in (2.31). Thus, we only need to compute z′V−1X̆

(since X̆′V−1z = (z′V−1X̆)′). Given (2.25), we can write z′V−1X̆ as:

z′V−1X̆ = z′WX̆− z′WZ̆(F+ Z̆′WZ̆)−1Z̆′WX, (2.36)

where all the quantities were computed previously, except to z′WX̆, which is computed as:

z′WX̆ = z′CΓX,

where CΓX was calculated in (2.34).

12
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3 Applications

In this section, we apply our methodology to three mortality datasets. The first one is related with

American male deaths (indexed by age and year at death) and we will use them to illustrate how

the PCLMM approach is applied when the data have array structure. The second dataset comes

from a large European epidemiological project called MEDEA (see http://www.proyectomedea.

org), whose aim was to study the impact of socio-economic and environmental inequalities on

the mortality rates by different causes. Deaths are not only related to individual factors, but

also to contextual factors, most of them related to the area of residence. Therefore, it is of great

interest to estimate spatial trends present in the data that can help to identify areas that may need

intervention. We will use this dataset to illustrate how our proposal is applied in the area-to-area

and area-to-point cases. Finally, the third dataset is part of the Atlas of Cancer Mortality in the

United States (Pickle et al., 1999) and was downloaded from http://ratecalc.cancer.gov. This

dataset was analysed by Goovaerts (2006a) and we will use them to compare the performance of

our proposal with his in the area-to-point case.

3.1 Deaths by respiratory diseases

Consider the death counts by respiratory diseases of American males from ages 1 to 100, and from

1959 to 1998 (for more details about this data, see Currie et al., 2006). These raw data are displayed

in the left panel of Figure 2. Suppose that we observe aggregated death counts, recorded in five-

year age and four-year classes, instead of the previous raw data. The middle panel of Figure 2

shows the bivariate histogram for these aggregated counts, which is conformed by 200 classes

(that is, the resulting product of the 20 age groups and 10 year groups).

In order to estimate the underlying distribution behind these aggregated data, we apply the

PCLMM approach (for array data) described in the previous section. In this case, x1 = (1, ..., 100)′

and x2 = (1959, ..., 1998)′ are the vectors of ages and years at fine resolution, and C = C2 ⊗C1,

where C1 and C2 are the (marginal) composition matrices for ages and years, of dimensions

20 × 100 and 10 × 40, respectively. The right panel of Figure 2 shows the smoothed bivariate

distribution obtained by the PCLMM approach, choosing ndx1 = 25 and ndx2 = 10 as the number

of equally-spaced knots for each dimension. We observe that the smoothed distribution closely

follows the bivariate trend displayed by the original raw data. This is due in part by the levels of

aggregation of each dimension. In general, the smoothed PCLMM distribution will lose precision,
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Figure 2: American male deaths by respiratory diseases during the period 1959 − 1998, from ages 1 to 100. The left

and middle panels represent these deaths as totals of one-year age/one-year classes and five-year age/four-year classes

respectively. The right panel shows the estimated distribution using Poisson PCLMM approach for array data.

if we observe wide classes at the edge of the histogram. Since we are only considering death

counts, a way to improve the description of the mortality is considering a vector of exposures. In

the following examples, we will include these values in the analysis and we will see how to deal

with them when they area only available at the aggregated level.

Considering the array methods described in Section 2.2.1 into the iterative procedure (to obtain

the estimated distribution in the right panel of Figure 2), the resulting computing time took about

61.840 seconds (Intel R⃝ CoreTM i7, 1.80 GHz, Windows 8.1). On the other hand, if we disregard the

use of these array methods, the computing time took about 221.360 seconds; that is, for this case,

the computing time was reduced in about 3.6 times. This shows the usefulness of the adapted

GLAM algorithms developed here, for PCLMM estimation, in terms of computational speed.

3.2 Deaths by cardiovascular diseases

Our data correspond to the number of observed and expected female deaths by cardiovascular

diseases in the community of Madrid, Spain, over the period 2001-2007, which are available at

different (aggregated) spatial levels. The left panel in Figure 3 shows the spatial distribution of

the (raw) natural logarithm of standardized mortality rates (denoted by log(SMR)) for 179 mu-

nicipalities of this community. We use a sequential map color scheme with 10 equally-weighted

classes (that is, the class boundaries correspond to deciles of the raw log(SMR)) to readily identify

which values are higher or lower than others on the mortality map (Brewer, 1999). For 2001-2007

14
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Raw log(SMR) PGLMM log(SMR)

[0.397,1.474]
[0.099,0.397)
[0.025,0.099)
[−0.062,0.025)
[−0.138,−0.062)
[−0.224,−0.138)
[−0.289,−0.224)
[−0.369,−0.289)
[−0.679,−0.369)
[−1.444,−0.679)

Figure 3: Spatial distribution of raw log(SMR) for 179 municipalities in the community of Madrid over the period

2001-2007 (left panel) and the resulting smoothed log(SMR) by applying the PGLMM approach to raw data (right

panel). The color legend applies to both maps, where the class boundaries correspond to the deciles of raw log(SMR).

period, the number of expected deaths ranges from 0.916 to 44715.610 over these municipalities,

while the number of observed deaths varies from 0 to 34884.

Since raw log(SMR) vary abruptly between municipalities, we apply the PGLMM approach

of Lee and Durbán (2009) to enhance the visibility of underlying trends. The right panel in Figure

3 shows the estimated spatial trend obtained from PGLMM approach (using ndx1 = ndx2 = 20

equally spaced knots), where the coordinates of the centroids of the municipalities are used as

covariates. We observe that most of the higher rates are in the boundaries of the community of

Madrid, specially in the south-western area. They correspond to areas with difficult access to

health facilities, or industrialized areas where environmental conditions are poor.

3.2.1 Area-to-area case

Now, suppose that we seek to visualize the spatial distribution of log(SMR) at census tract level,

assuming that we only have mortality data at municipality level. The total number of census

tracts for the community of Madrid is 3906. To estimate the desired spatial distribution, we use

the model given in (2.8) for the area-to-area case (ATA-PCLMM), were we must consider the

exposures (the number of expected deaths, in this case) at census tract level. For this dataset,

we in fact have these quantities, which we denote as etrue; otherwise the user has to estimate

them in advance. A naive way to do this is to assume that the exposures are evenly distributed

throughout the census tracts at each municipality. We denote these resulting estimates as enaive,

and we will use them for comparison purpose. The top-left and top-right maps in Figure 4 show
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ATA−PCLMM log(SMR) etrue ATA−PCLMM log(SMR) enaive
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Approx. standard errors etrue Approx. standard errors enaive
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[0.077,0.108)
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Figure 4: Smoothed log(SMR) and their approximate standard errors at census tract level, using ATA-PCLMM with

the true number of expected deaths at census tract level (top-left) and its naive estimator (top-right). The color legend

applies to all the maps that show the same quantity; the class boundaries for smoothed log(SMR) correspond to the

deciles of raw log(SMR) at municipality level, and the class boundaries for standard errors correspond to the cuts of the

range of all errors in ten equal parts.

the resulting smoothed log(SMR) at census tract level, using ATA-PCLMM approach (ndx1 =

ndx2 = 20 equally spaced knots) with etrue and enaive, respectively. These maps have a similar

spatial distribution and are consistent with the smoothed trend obtained at municipality level

(right panel of Figure 3). The approximate standard errors for these smoothed ATA-PCLMM

log(SMR) were obtained using (2.27), and are displayed at the bottom of each mortality map in

Figure 4. For comparison purpose, we select the class boundaries for these maps as the cuts of

the range of all errors in ten equal parts. We observe that these error maps are very similar and

both present high values in the northern area of the community of Madrid. The later is due the

fact that both smoothed maps are unable to capture more precise mortality trends over the census

tracts in this part of the map, where we have less information.

It is clear that the municipalities of the community of Madrid vary greatly in shape and size,

especially when we compare the municipality of Madrid (which is located at the center of the
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community) with the rest of them. Figure 5 displays the district and census tract boundaries for

this municipality, which was conformed by 21 districts and 2358 census tracts, and the spatial

distribution of raw log(SMR) at district level. The zoom in on the center of this municipality

provides a more detailed geographical distribution of the census tracts. Suppose that we only

have the number of observed female deaths by cardiovascular diseases for each district in the

municipality of Madrid, and we want to estimate mortality rates for the selected districts at census

tract level, using the additional information of the number of expected deaths at this level. The

ATA-PCLMM approach fits to this situation, in which we want to move from district to census

tracts. Figure 6 shows the resulting smoothed log(SMR) using ATA-PCLMM approach (ndx1 =

ndx2 = 20 equally spaced knots) with the true vector of exposures. For the area of interest, we

observe a more detailed spatial distribution of mortality, where the highest log(SMR) are mostly

concentrated around Madrid Centro.

Census tract boundaries
District boundaries
Selected district boundaries

Centro

Arganzuela

Retiro

Salamanca

Chamartín
Tetuán

Chamberí

[−0.108,0.041]
[−0.155,−0.108á
[−0.196,−0.155á
[−0.229,−0.196á
[−0.255,−0.229á
[−0.284,−0.255á
[−0.31,−0.284á
[−0.337,−0.31á
[−0.379,−0.337á
[−1.234,−0.379á

Figure 5: Spatial distribution of raw log(SMR) for the 21 districts in the municipality of Madrid. The zoom shows 7

centric districts of interest and their 780 census tracts. The class boundaries correspond to the deciles of raw log(SMR).

[−0.108,0.041]
[−0.155,−0.108)
[−0.196,−0.155)
[−0.229,−0.196)
[−0.255,−0.229)
[−0.284,−0.255)
[−0.31,−0.284)
[−0.337,−0.31)
[−0.379,−0.337)
[−1.234,−0.379)

ATA-PCLMM log(SMR) (etrue)

Figure 6: Smoothed log(SMR) using ATA-PCLMM approach with the true number of expected deaths at census tract

level. The class boundaries for the smoothed log(SMR) correspond to the deciles of the raw log(SMR) at district level.
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3.2.2 Area-to-point case

To illustrate the area-to-point case, suppose that we want to create a continuous mortality trend

across municipalities in the community of Madrid. We discretize this region by imposing a 100×

100 fine grid over it, and we select the points that fall inside of each municipality (which leads

to 4359 points). Figure 7 shows the map of the municipalities in the community of Madrid and

the 100 × 100 grid chosen. Then we can use the model given in (2.8) for the area-to-point case

(ATP-PCLMM), to produce such continuous trend. Due to the lack of expected deaths at this

point-level, we estimate them using the naive approach described previously. The right map of

Figure 8 shows the resulting smoothed log(SMR) using ATP-PCLMM with these naive estimates

(where we use ndx1 = ndx2 = 20 equally spaced knots for the creation of B-spline bases), and the

left map of Figure 8 displays the corresponding approximate standard errors. We observe that the

ATP-PCLMM log(SMR) map gives more details than the previous ATA-PCLMM log(SMR) maps,

but some of their associated standard errors are larger than the maximum of the ATA-PCLMM

standard errors. These higher values are located at the boundary of the community of Madrid, as

would be expected.
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Figure 7: Map of the community of Madrid. The red and blue points represent the centroids of the 179 municipalities

and the 4359 grid points selected, respectively

ATP-PCLMM log(SMR) enaive Approx. standard errors enaive

Figure 8: Smoothed log(SMR) using ATA-PCLMM approach with the true number of expected deaths at census tract

level. The class boundaries correspond to the deciles of these smoothed log(SMR).
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3.3 Deaths by lung cancer

This dataset contains the number of white female deaths by lung cancer and the corresponding

age-adjusted mortality rates (per 100000 person-years), recorded over the period 1970-1994 in the

state of Indiana, United States, at county level (92 counties). The population at risk in each county

can be estimated as: 100000× the total number of deaths over the period 1970-1994 divided by

the corresponding age-adjusted mortality rate. Goovaerts (2006a) allocated these county-level

population estimates (according to the 2000 census block level data) to a fine grid of 25 km2 cells,

leading to 3751 grid points. These high-resolution population estimates were kindly provided by

Dr. Pierre Goovaerts (BioMedware Inc., MI, USA) and we will use them in subsequent analysis.

The top maps of Figure 9 shows the spatial distribution of (raw) age-adjusted lung cancer

mortality rates of the Indiana county data previously described (left) and the smoothed morta-

lity rates using the PGLMM approach with ndx1 = ndx2 = 23 equally-spaced knots. The class

boundaries correspond to the deciles of the raw mortality rates and the color legend applies to

all these maps. We observe that the highest lung cancer mortality rates are still observed in the

central counties of Indiana after to apply the PGLMM approach. The first two rows of Table 1

summarize the corresponding statistics for the raw and smoothed PGLMM lung cancer mortality

rates, respectively, which reflect numerically the increase of the minimum raw rates observed in

a few north-western and north-eastern counties after to apply the PGLMM approach. This situa-

tion was pointed out by Goovaerts (2006a), when he analysed the Indiana county data (at county

level) with different kriging methods.

Considering now the population at risk over the fine grid of 25 km2 cells, we can apply

the ATP-PCLMM approach on this dataset to obtain a continuous mortality risk map, thus eli-

minating the visual bias associated with the interpretation of the top-right choropleth map in

Figure 9. The bottom-left map of Figure 9 shows the resulting ATP-PCLMM mortality rates,

using ndx1 = ndx2 = 23 equally-spaced knots. These estimates are calculated as r̂PCLMM(xs) =

100000 exp(Xβ̂ + Zα̂), where xs = (x1s,x2s), s = 1, ..., 3751, represent the points of the fine

grid. This isopleth map shows more in detail the presence of delineated areas of lower and higher

mortality rates.

In order to compare our proposal with other existing methods, we apply the area-to-point (or

ATP) Poisson kriging approach of Goovaerts (2006a) on this dataset. The ATP kriging estimator
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is given by:

r̂PK(xs) =
K∑

i=1

λi(xs)r(vi),

where λi(xs) is the weight assigned to each raw mortality rate r(vi) at county vi. The K weights

are computed by solving a system of linear equations, where a point-support covariance, or equi-

valently, a point-support semivariogram of the risk is needed. This function cannot be estima-

ted directly from the observed rates, since only aggregated data are available. Goovaerts (2008)

developed a procedure to conduct the derivation of the point-support semivariogram from the

“regularized” experimental semivariogram computed from areal data (deconvolution process),

in presence of irregular geographical units and heterogeneous population distribution.

The isopleth map at the bottom-right of Figure 9 shows the resulting ATP Poisson kriging

mortality rates. This estimation was conducted by following the indications given in Goovaerts

(2006a) and performed by using SpaceStat 4.0 software (http://www.biomedware.com/). Su-

mmary statistics for both ATP-PCLMM and ATP Poisson kriging estimates are displayed in Table

1, where we observe that the variance of ATP-PCLMM estimates is higher than the variance ob-

tained with the ATP Poisson kriging. Note that both methods have similar minimum values,

but some of their estimates exceed the maximum raw lung mortality rate (31.795 deaths/10000

habitants).

Table 1: Summary statistics for county-level and point-level estimates of lung cancer mortality in Indiana over the

period 1970-1994.

Spatial level Quantity Mean Variance Min Max

County Raw rates 21.188 18.443 9.084 31.795

County PGLMM rates 21.589 11.516 13.202 31.624

Point ATP-PCLMM rates (etrue) 21.204 11.488 12.232 34.067

Point ATP Poisson kriging rates 21.198 9.481 12.112 33.896

Mean, variance, minimum and maximum values for quantities related with age-adjusted mortality rates (per 100000
person-years) of white female deaths by lung cancer in Indiana at different spatial resolutions.

3.3.1 Simulation study

The isopleth maps at the bottom of Figure 9 illustrate different estimates for the latent or under-

lying spatial distribution of lung cancer mortality, which is unknown in practice. To assess the

prediction performance of ATP-PCLMM and ATP Poisson kriging approaches, we conducted a
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Raw  mortality rates
(per 100000 person-years)

[26.069,31.795]
[25.091,26.069)
[23.307,25.091)
[22.196,23.307)
[21.162,22.196)
[19.971,21.162)
[18.811,19.971)
[17.945,18.811)
[16.648,17.945)
[9.083,16.648)

PGLMM mortality rates

ATP-PCLMM mortality rates (etrue) ATP Poisson kriging

Figure 9: Maps of age-adjusted lung cancer mortality rates in Indiana. The top-left map shows the raw lung cancer

mortality rates per 100000 person-years recorded over the period 1970-1994, and the top-right map shows the resulting

smoothed mortality rates by applying the PGLMM approach for raw data. The bottom maps shows the resulting

smoothed mortality estimates using ATP-PCLMM and ATP Poisson kriging approaches (with the high-resolution

population estimates), respectively. The color legend applies to all maps; the class boundaries correspond to the deciles

of the raw mortality rates

simulation study in the following way:

1. The continuous mortality surface obtained with the ATP Poisson kriging approach was con-

sidered here as the true underlying mortality trend over the fine grid of 25 km2 cells in In-

diana. We denoted these mortality rates as r(us), where us, s = 1, ..., 3751, represent the

points of the fine grid.

2. These quantities and the population at risk over the fine grid of 25 km2 cells (denoted as
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e(us)) were used to calculate the mortality rate for each county vδ , δ = 1, ..., 92:

r(vδ) =
1

e(vδ)

Pδ∑

s=1

e(us)r(us),

where Pδ denotes the number of points us used to discretize the county vδ , and e(vα) =
∑Pδ

s=1 e(us).

3. 100 realizations of the number of deaths recorded over each county were generated by ran-

dom drawing of a Poisson distribution whose mean parameter is r(vδ)× e(vδ).

4. For each realization, we apply ATP-PCLMM and ATP Poisson kriging approaches, using

the population at risk over the fine grid of 25 km2 cells as the vector e of exposures at the

fine resolution.

For all l = 1, ..., 100 realizations, the predicted risks r(l)P (us) obtained from both approaches were

compared to the underlying risk r(us), s = 1, ..., 3751, using the following criteria:

• Mean error:

ME(l) =
1

W

3751∑

s=1

e(us)
[
r(l)P (us)− r(us)

]
with W =

3751∑

s=1

e(us)

• Mean absolute error:

MAE(l) =
1

W

3751∑

s=1

e(us)
∣∣∣r(l)P (us)− r(us)

∣∣∣ with W =
3751∑

s=1

e(us)

• Mean squared error:

MSE(l) =
1

3751

3751∑

s=1

(
r(l)P (us)− r(us)

)2

Note that both the mean and the absolute mean errors penalize more the errors that affect a larger

population, and were used as criteria for the study of the performance of alternative smoothing

techniques in Goovaerts (2005) and Goovaerts (2006a). Figure 10 shows these resulting errors via

box-plots, in which we observe that our approach gives slightly more prediction accuracy than

the ATP Poisson kriging, for each criterion. Table 2 shows the simulation results obtained on

average over 100 realizations in this study.

22



UC3M WORKING PAPER Ayma et al.

ATP−PCLMM ATP Poisson kriging

−0
.0

02
0.

00
0

0.
00

2
0.

00
4

0.
00

6
0.

00
8

M
ea

n 
er

ro
r (

M
E)

●

●

●

ATP−PCLMM ATP Poisson kriging
0.

96
0.

98
1.

00
1.

02
1.

04

M
ea

n 
ab

so
lu

te
 e

rro
r (

M
AE

)

●

●

●

ATP−PCLMM ATP Poisson kriging

1.
70

1.
75

1.
80

1.
85

1.
90

1.
95

M
ea

n 
sq

ua
re

d 
er

ro
r (

M
SE

)

Figure 10: Performance comparison between ATP-PCLMM and ATP Poisson kriging approaches: mean errors (left),

mean absolute errors (middle), and mean squared errors (right) of predictions.

Table 2: Perfomance comparison of ATP-PCLMM and ATP Poisson kriging approaches.

Model Mean error Mean absolute error Mean squared error

ATP Poisson kriging 0.006 1.020 1.879

ATP-PCLMM (etrue) 5.661e−05 0.968 1.737

Results obtained on average over 100 realizations generated for Indiana county data.

4 Discussion

In this paper, the penalized composite link mixed model (PCLMM) for spatially aggregated data

was developed and applied to the disaggregation of mortality rates. It provides a flexible descrip-

tive tool for epidemiological studies, when the aim is to visualize the spatial distribution of certain

rates at a desirable spatial resolution. The PCLMM approach filters the existing noise in raw rates,

which is caused by the small number problem, and allows the creation of more refined mortality

maps by including the distribution of the exposure variable at fine resolution. Moreover, the re-

sulting PCLMM estimates may be linked with potential risks factors that are available over the

fine resolution, allowing a posterior correlation analysis between them.

We used the statistical software R (R Core Team, 2014) for data analysis with the PCLMM

approach. Our plan is to implement the presented methodology in a future R package, in such

a way that it can be accessible by any user. Although we have omitted any kind of CPU time

analysis, associated with computation of mortality trends at fine resolution for the applications

presented in Sections 3.2 and 3.3, the computing time of our procedure in such cases are relatively

short. Of course, this time will be reduced, if we disaggregate at spatial resolutions that are not
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so fine. A possibility to improve the computational speed is to consider the generalization of the

Schall algorithm (Schall, 1991) presented by Rodrı́guez-Álvarez et al. (2015), into a PCLMM con-

text. In the other hand, it might be possible to improve the estimation of the mortality estimates

in the ATP case, considering new structures for the composition matrix C. An attempt could be

the new composition matrix C∗, whose entries are determined as the amount of area (measured

between 0 and 1) that each grid cell shares with a specific geographical units.

We performed a simulation study to compare the area-to-point Poisson kriging of Goovaerts

(2006a) with our proposal, using aggregated data measured over the 92 counties of the Indiana

and the high-resolution population estimates over a fine grid. The simulation results showed that

our proposal is competitive with respect to this geostatistical technique. However, further simu-

lation studies should be done, especially for the case when the geographical units vary greatly in

shape and size (for the state of Indiana, we have fairly similar counties).

Finally, the proposed methodology can be generalized to the spatio-temporal setting, in which

the temporal dimension could be available only in aggregated form. In this context, the imple-

mentation of efficient and fast algorithms for the estimation procedure of PCLMMs will be criti-

cal. The resulting estimates will be displayed as dynamic maps, and will allow the comparison of

mortality in the finest spatio-temporal resolution.
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Appendix

In this section, we introduce some notation and definitions of array methods proposed in Currie

et al. (2006) and Eilers et al. (2006) that we have used in Section 2.2.1.

Definition 1 (Row tensor) The row tensor of a matrix X with c columns is defined as:

G(X) = (X⊗ 1′
c)⊙ (1′

c ⊗X),

where 1c is a vector of 1’s of length c, and ⊙ is the element-by-element product.
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The previous definition can be extended in the following way.

Definition 2 (Row tensor of two matrices) The row tensor of the matrices X1 and X2, of dimensions

n× c1 and n× c2, respectively, is defined as:

G(X1,X2) = (X1 ⊗ 1′
c2)⊙ (1′

c1 ⊗X2),

where 1c1 and 1c2 are vectors of 1’s of lengths c1 and c2, respectively.

Note that the previous definition denotes the “row-wise” Kronecker product of two matrices,

which we have introduced in Section 2.1.

Definition 3 (H-transform) The H-transform of the d-dimensional array A of size c1 × c2 × · · · × cd

by the matrix X of dimension r × c1, denoted as H(X,A), is defined as follows. Let A∗ be the matrix

of dimension c1 × c2c3 · · · cd that is obtained by flattening dimensions 2-d of A; form the matrix product

XA∗ of dimension r × c2c3 · · · cd; then H(X,A) is the d-dimensional array of size r × c1 × c2c3 · · · cd
that is obtained from XA∗ by reinstating dimensions 2-d of A.

In one-dimension, we have that A = a and H(X,A) = Xa, whereas in two-dimensions

H(X,A) = XA. The following definition generalizes the transpose of a matrix.

Definition 4 (Array rotation) The rotation of the d-dimensional array A of size c1 × c2c3 · · · cd is the

d-dimensional array R(A) of size c2 × c3 × · · ·× cd × c1 that is obtained by permuting the indices of A.

From the two last definitions, we obtain:

Definition 5 (Rotated H-transform) The rotated H-transform of the array A by the matrix X is given

by:

ρ(X,A) = R(H(X,A)).
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